Skip to main content
Log in

Motor sequence learning in the elderly: differential activity patterns as a function of hand modality

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Previous research on motor sequence learning (MSL) in the elderly has focused mainly on unilateral tasks, even though bilateral coordination might be impaired in this age group. In this fMRI study, 28 right-handed elderly subjects were recruited. The paradigm consisted of a Novel and a simple Control sequence executed with the right (R), left (L) and both hands (B). Behavioral performance (Accuracy[AC], Inter-tap Interval[ITI]) and associated brain activity were assessed during early learning. Behavioral performance in the Novel task was similar between unilateral conditions whereas in the bimanual condition more errors and slower motor execution were observed. Brain activity increases during learning showed differences between Conditions: R showed increased activity in pre-SMA, basal ganglia and left hippocampus while B showed activity increments mainly in posterior parietal cortex and cerebellum. L did not show any activity modulation during learning. Performance correlates for AC (related to spatial success) and ITI (related to accurate timing) shared a cortico-basal-cerebellar network. However, it was found that the ITI regressor presented additional significant correlations with activity in SMA and basal ganglia in R. The AC regressor showed additional significant correlations with activity in more extended thalamic and cerebellar areas in B. The present findings suggest that, behaviorally, the spatial and temporal components of MSL are impaired in elderly subjects when using both hands. Additionally, differential brain activity patterns were found across hand modalities. The results obtained reveal the existence of a highly specialized network in the dominant hand and identify areas specifically involved in bimanual coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., Darsaud, A., Ruby, P., Luppi, P., Degueldre, C., Peigneux, P., Luxen, A., Maquet, P., 2008. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. 58(2):261-72

  • Albouy, G., Fogel, S., King, B. R., Laventure, S., Carrier, J., Doyon, J., Benali, H., Karni, A., & Robertson, E. M. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage, 108, 423–434.

    Article  PubMed  Google Scholar 

  • Aznarez-Sanado, M., Fernandez-Seara, M., Loayza, F., & Pastor, M. (2013). Functional asymmetries in early learning during right, left, and bimanual performance in right-handed subjects. Journal of Magnetic Resonance Imaging, 37, 619.

    Article  PubMed  Google Scholar 

  • Bangert, A. S., Reuter-Lorenz, P., Walsh, C. M., Schachter, A. B., & Seidler, R. D. (2010). Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia, 48, 1165–1170.

    Article  PubMed  Google Scholar 

  • Bhakuni, R., & Mutha, P. K. (2015a). Learning of bimanual motor sequences in normal aging. Frontiers in Aging Neuroscience, 7, 76–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhakuni, R., & Mutha, P. K. (2015b). Learning of bimanual motor sequences in normal aging. Frontiers in Aging Neuroscience, 7, 76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S. H. A., & Desmond, J. E. (2005). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia, 43, 1227–1237.

    Article  PubMed  Google Scholar 

  • Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.

    Article  PubMed  Google Scholar 

  • Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004a). Changes in brain activation during the acquisition of a new bimanual coodination task. Neuropsychologia, 42, 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004b). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage, 21, 1416–1427.

    Article  CAS  PubMed  Google Scholar 

  • Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. NeuroImage, 33, 127–138.

    Article  PubMed  Google Scholar 

  • Doyon, J., Laforce, R. J., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., Bédard, P. J., Bédard, F., & Bouchard, J. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia, 36, 625–641.

    Article  CAS  PubMed  Google Scholar 

  • Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.

    Article  PubMed  Google Scholar 

  • Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehericy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61.

    Article  PubMed  Google Scholar 

  • Fernández-Seara, M. A., Aznárez-Sanado, M., Mengual, E., Loayza, F. R., & Pastor, M. A. (2009). Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. NeuroImage, 47, 1797–1808.

    Article  PubMed  Google Scholar 

  • Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2010). Hippocampal contribution to early and later stages of implicit motor sequence learning. Experimental Brain Research, 202(4), 795–807.

    Article  PubMed  Google Scholar 

  • Ghilardi, M. F., Moisello, C., Silvestri, G., Ghez, C., & Krakauer, J. W. (2009). Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. Journal of Neurophysiology, 101, 2218–2229.

    Article  PubMed  Google Scholar 

  • Graziadio, S., Nazarpour, K., Gretenkord, S., Jackson, A., & Eyre, J. A. (2015). Greater intermanual transfer in the elderly suggests age-related bilateral motor cortex activation is compensatory. Journal of Motor Behavior, 47, 47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoff, M., Ragert, P., 2015. Switching between hands in a serial reaction time task: A comparison between young and old adults. 7, 176

  • Hoff, M., Trapp, S., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., & Ragert, P. (2015). Switching between hands in a serial reaction time task: a comparison between young and old adults. Frontiers in Aging Neuroscience, 7, 176–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, D. V., Howard, J. H. J., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jäncke, J. H. R., Specht, K., Mirzazade, S., & Peters, M. (1999). The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation. A functional magnetic resonance imaging study., 9(5), 497–507.

    Google Scholar 

  • King, B. R., Fogel, S. M., Albouy, G., & Doyon, J. (2013). Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Frontiers in Human Neuroscience, 7, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46, 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehéricy, S., Benali, H., Van, D. M., Pélégrini-Issac, M., Waechter, T., Ugurbil, K., Doyon, J., & Ungerleider, L. G. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 102, 12566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luis, E. O., Arrondo, G., Vidorreta, M., Martínez, M., Loayza, F., Fernández-Seara, M. A., & Pastor, M. A. (2015). Successful working memory processes and cerebellum in an elderly sample: a neuropsychological and fMRI study. PloS One, 10, e0131536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, R., Kleinhaus, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cognitive Brain Research, 14, 277–293.

    Article  PubMed  Google Scholar 

  • Muller, R. A., Kleinhans, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cognitive Brain Research, 14, 277–293.

    Article  PubMed  Google Scholar 

  • Nair, D. G., Purcott, K. L., Fuchs, A., Steinberg, F., & Kelso, J. A. S. (2003). Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Cognitive Brain Research, 15, 250–260.

    Article  PubMed  Google Scholar 

  • O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Johansen-Berg, H., & Ramnani, N. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953–965.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226, 579–591.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177.

    Article  Google Scholar 

  • Rieckmann, A., Fischer, H., & Backman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: relations to performance. NeuroImage, 50, 1303.

    Article  PubMed  Google Scholar 

  • Sadato, N., Yonekura, Y., Waki, A., Yamada, H., & Ishii, Y. (1997). Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. The Journal of Neuroscience., 17, 9667–9674.

    CAS  PubMed  Google Scholar 

  • Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.

    Article  CAS  PubMed  Google Scholar 

  • Schendan, H. E., Tinaz, S., Maher, S. M., & Stern, C. E. (2013). Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and parkinson’s disease. Behavioral Neuroscience, 127, 204–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz, R., Wessel, M. J., Zimerman, M., Timmermann, J. E., Gerloff, C., & Hummel, F. C. (2015). White matter integrity of specific dentato-thalamo-cortical pathways is associated with learning gains in precise movement timing. Cerebral Cortex, 25, 1707–1714.

    Article  PubMed  Google Scholar 

  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34, 721–733.

    Article  CAS  PubMed  Google Scholar 

  • Serrien, D. J. (2008). Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia, 46, 419–425.

    Article  PubMed  Google Scholar 

  • Serrien, D. J. (2009). Functional connectivity patterns during motor behaviour: the impact of past on present activity. Human Brain Mapping, 30, 523–531.

    Article  PubMed  Google Scholar 

  • Serrien, D. J., Swinnen, S. P., & Stelmach, G. E. (2000). Age-related deterioration of coordinated interlimb behavior. Journals of Gerontology: Series B., 55(5), P295–P303.

    Article  CAS  Google Scholar 

  • Steele, C. J., & Penhune, V. B. (2010). Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. The Journal of Neuroscience., 30, 8332–8341.

    Article  CAS  PubMed  Google Scholar 

  • Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage, 44, 489–501.

    Article  PubMed  Google Scholar 

  • Swinnen, S.P., Wenderoth, N., 2004. Two hands, one brain: Cognitive neuroscience of bimanual skill. Trends Cogn. Sci. (Regul. Ed. ). 8, 18–25.

  • Verneau, M., van, D. K., Savelsbergh, G. J. P., & de Looze, M. P. (2014). Age and time effects on implicit and explicit learning. Experimental Aging Research, 40, 477–511.

    Article  PubMed  Google Scholar 

  • Wadden, K., Brown, K., Maletsky, R., & Boyd, L. A. (2013). Correlations between brain activity and components of motor learning in middle- aged adults: an fMRI study. Frontiers in Human Neuroscience, 7, 16.

    Article  Google Scholar 

  • Walsh, R. R., Small, S. L., Chen, E. E., & Solodkin, A. (2008). Network activation during bimanual movements in humans. NeuroImage, 43, 540–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., & Sainburg, R. L. (2009). Generalization of visuomotor learning between bilateral and unilateral conditions. Journal of Neurophysiology, 102, 2790–2799.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Pastor.

Ethics declarations

Funding

This project has been supported by grants from Fundación para la Investigación Médica Aplicada (FIMA), Universidad de Navarra and Centro de Investigación Biomédica de Red de Enfermedades Neurodegenerativas (CIBERNED). Luis Eudave is supported by a grant from the Friends of the University of Navarra Association.

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Additional information

Luis Eudave and Maite Aznárez-Sanado contributed equally to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eudave, L., Aznárez-Sanado, M., Luis, E.O. et al. Motor sequence learning in the elderly: differential activity patterns as a function of hand modality. Brain Imaging and Behavior 11, 986–997 (2017). https://doi.org/10.1007/s11682-016-9569-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9569-7

Keywords

Navigation