Skip to main content

Advertisement

Log in

Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi, N., Akanuma, N., Ito, M., Adachi, T., Takekawa, Y., Adachi, Y., Matsuura, M., Kanemoto, K., & Kato, M. (2010). Two forms of déjà vu experiences in patients with epilepsy. Epilepsy & Behavior, 18(3), 218–222.

    Article  Google Scholar 

  • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and brain sciences, 22(03), 425--444.

  • Aggleton, J. P., Dumont, J. R., & Warburton, E. C. (2011). Unraveling the contributions of the diencephalon to recognition memory: a review. Learning & Memory, 18(6), 384--400.

  • Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013). The convergence of maturational change and structural covariance in human cortical networks. The Journal of Neuroscience, 33(7), 2889–2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.

    Article  PubMed  Google Scholar 

  • Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229--244.

  • Bancaud, J., Brunet-Bourgin, F., Chauvel, P., & Halgren, E. (1994). Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain, 117(1), 71–90.

    Article  PubMed  Google Scholar 

  • Bartolomei, F., Barbeau, E., Gavaret, M., Guye, M., McGonigal, A., Regis, J., & Chauvel, P. (2004). Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology, 63(5), 858–864.

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei, F., Barbeau, E. J., Nguyen, T., McGonigal, A., Régis, J., Chauvel, P., & Wendling, F. (2012). Rhinal–hippocampal interactions during déjà vu. Clinical Neurophysiology, 123(3), 489–495.

    Article  PubMed  Google Scholar 

  • Berntson, G. G., Norman, G. J., Bechara, A., Bruss, J., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological science, 22(1), 80--86.

  • Brázdil, M., & Zeman, A. (2013). The boundaries of epilepsy: where is the limit? A reply to Labate and Gambardella. Cortex, 49(4), 1163–1164.

    Article  PubMed  Google Scholar 

  • Brázdil, M., Mareček, R., Fojtíková, D., Mikl, M., Kuba, R., Krupa, P., & Rektor, I. (2009). Correlation study of optimized voxel-based morphometry and 1 H MRS in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Human Brain Mapping, 30, 1226–1235.

    Article  PubMed  Google Scholar 

  • Brázdil, M., Mareček, R., Urbánek, T., Kašpárek, T., Mikl, M., Rektor, I., & Zeman, A. (2012). Unveiling the mystery of déjà vu: The structural anatomy of déjà vu. Cortex, 48(9), 1240–1243.

    Article  PubMed  Google Scholar 

  • Brown, A. S. (2003). A review of the deja vu experience. Psychological Bulletin, 129(3), 394–413.

    Article  PubMed  Google Scholar 

  • Burwell, R. D. (2000). The parahippocampal region: corticocortical connectivity. Annals of the New York Academy of Sciences, 911(1), 25–42.

    Article  CAS  PubMed  Google Scholar 

  • Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B. (2015). Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. NeuroImage, 113, 44–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clos, M., Rottschy, C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. NeuroImage, 99, 269–280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, M. X., Lombardo, M. V., & Blumenfeld, R. S. (2008). Covariance-based subdivision of the human striatum using T1-weighted MRI. European Journal of Neuroscience, 27(6), 1534–1546.

    Article  PubMed  Google Scholar 

  • Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Dogan, I., Eickhoff, C. R., Fox, P. T., Laird, A. R., Schulz, J. B., Eickhoff, S. B., & Reetz, K. (2015). Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington’s disease. NeuroImage: Clinical, 7, 640–652.

    Article  Google Scholar 

  • Duerden, E. G., Arsalidou, M., Lee, M., & Taylor, M. J. (2013). Lateralization of affective processing in the insula. NeuroImage, 78, 159–175.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eickhoff, S. B., Jbabdi, S., Caspers, S., Laird, A. R., Fox, P. T., Zilles, K., & Behrens, T. E. (2010). Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. The Journal of Neuroscience, 30(18), 6409–6421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361.

    Article  PubMed  Google Scholar 

  • Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489–504.

    Article  CAS  PubMed  Google Scholar 

  • Gloor, P. (1990). Experiential phenomena of temporal lobe epilepsy: facts and hypotheses. Brain, 113(6), 1673–1694.

    Article  PubMed  Google Scholar 

  • Gloor, P., Olivier, A., Quesney, L. F., Andermann, F., & Horowitz, S. (1982). The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Annals of Neurology, 12(2), 129–144.

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen, H. J., Wright, C. I., Beijer, A. V., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences, 877(1), 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Guedj, E., Aubert, S., McGonigal, A., Mundler, O., & Bartolomei, F. (2010). Déjà-vu in temporal lobe epilepsy: metabolic pattern of cortical involvement in patients with normal brain MRI. Neuropsychologia, 48(7), 2174–2181.

    Article  PubMed  Google Scholar 

  • Halgren, E., Walter, R. D., Cherlow, D. G., & Crandall, P. H. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain, 101(1), 83–115.

    Article  CAS  PubMed  Google Scholar 

  • Havekes, R., Abel, T., & Van der Zee, E. A. (2011). The cholinergic system and neostriatal memory functions. Behavioural Brain Research, 221(2), 412–423.

    Article  CAS  PubMed  Google Scholar 

  • Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control. Human Brain Mapping, 35(6), 2741–2753.

    Article  PubMed  Google Scholar 

  • Hoffstaedter, F., Grefkes, C., Roski, C., Caspers, S., Zilles, K., & Eickhoff, S. B. (2015). Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Structure and Function, 220(2), 999–1012.

    Article  CAS  PubMed  Google Scholar 

  • Honey, C. J., Thivierge, J. P., & Sporns, O. (2010). Can structure predict function in the human brain? NeuroImage, 52(3), 766–776.

    Article  PubMed  Google Scholar 

  • Ickes, B. R., Pham, T. M., Sanders, L. A., Albeck, D. S., Mohammed, A. H., & Granholm, A. C. (2000). Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Experimental Neurology, 164, 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Illman, N. A., Butler, C. R., Souchay, C., & Moulin, C. J. (2012). Deja experiences in temporal lobe epilepsy. Epilepsy Research and Treatment. doi:10.1155/2012/539567.

    PubMed  PubMed Central  Google Scholar 

  • Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., & Milham, M. P. (2012). A convergent functional architecture of the insula emerges across imaging modalities. NeuroImage, 61(4), 1129–1142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z., Das, S., & Evans, A. C. (2013). Developmental changes in organization of structural brain networks. Cerebral Cortex, 23(9), 2072–2085. doi:10.1093/cercor/bhs187.

    Article  PubMed  Google Scholar 

  • Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage, 56(2), 455–475.

    Article  PubMed  Google Scholar 

  • Labate, A., Cerasa, A., Mumoli, L., Ferlazzo, E., Aguglia, U., Quattrone, A., & Gambardella, A. (2015). Neuro-anatomical differences among epileptic and non-epileptic déjà-vu. Cortex, 64, 1–7.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29(46), 14496–14505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23, S250–S263.

    Article  PubMed  Google Scholar 

  • McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157.

    Article  CAS  PubMed  Google Scholar 

  • Moulin, C. J. (2014). The strange sensation of déjà vu: not so strange in temporal lobe epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 85(2), 132–132.

    Article  Google Scholar 

  • Mullan, S., & Penfield, W. (1959). Illusions of comparative interpretation and emotion: production by epileptic discharge and by electrical stimulation in the temporal cortex. Archives of Neurology and Psychiatry, 81(3), 269–284.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor, A. R., & Moulin, C. J. (2010). Recognition without identification, erroneous familiarity, and déjà vu. Current Psychiatry Reports, 12(3), 165–173.

    Article  PubMed  Google Scholar 

  • O’Connor, A. R., & Moulin, C. J. A. (2013). Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli. Frontiers in Psychology, 4(881). doi:10.3389/fpsyg.2013.00881.

  • Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.

    Article  CAS  PubMed  Google Scholar 

  • Pail, M., Brázdil, M., Mareček, R., & Mikl, M. (2010). An optimized voxel-based morphometric study of gray matter changes in patients with left-sided and right-sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS). Epilepsia, 51(4), 511–518.

    Article  PubMed  Google Scholar 

  • Penfield, W., & Perot, P. (1963). The brain’s record of auditory and visual experience. A final summary and discussion. Brain, 86, 595–696.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, G. S., Vernon, E., Forbes, M. E., Yan, Q., Ma, Y. T., Hsieh, T., et al. (2001). Effects of early visualexperience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. Journal of Neuroscience, 21, 3923–3931.

    CAS  PubMed  Google Scholar 

  • Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? The Journal of Neuroscience, 31(19), 7174–7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottschy, C., Caspers, S., Roski, C., Reetz, K., Dogan, I., Schulz, J. B., Zilles, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Structure and Function, 218(6), 1551–1567.

    Article  CAS  PubMed  Google Scholar 

  • Rykhlevskaia, E., Gratton, G., & Fabiani, M. (2008). Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology, 45(2), 173--187.

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sno, H. N., Schalken, H. F., de Jonghe, F., & Koeter, M. W. (1994). The inventory for déjà vu experiences assessment: development, utility, reliability, and validity. Journal of Nervous and Mental Disease, 182(1), 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, Y., Kurita, T., Sakurai, K., Shiga, T., Tamaki, N., & Koyama, T. (2011). Persistent déjà vu associated with hyperperfusion in the entorhinal cortex. Epilepsy & Behavior, 21(2), 196–199.

    Article  Google Scholar 

  • Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214(5-6), 629--643.

  • Vignal, J. P., Maillard, L., McGonigal, A., & Chauvel, P. (2007). The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain, 130(1), 88–99.

    Article  PubMed  Google Scholar 

  • Warren-Gash, C., & Zeman, A. (2014). Is there anything distinctive about epileptic déjà vu? Journal of Neurology, Neurosurgery & Psychiatry, 85(2), 143–147.

    Article  Google Scholar 

  • Weinand, M. E., Hermann, B., Wyler, A. R., Carter, L. P., Oommen, K. J., Labiner, D., Ahern, G., & Herring, A. (1994). Long-term subdural strip electrocorticographic monitoring of ictal deja vu. Epilepsia, 35(5), 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., Duggirala, R., & Glahn, D. C. (2009). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf, R. C., Sambataro, F., Vasic, N., Depping, M. S., Thomann, P. A., Landwehrmeyer, G. B., Süssmuth, S. D., & Orth, M. (2014). Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychological Medicine, 44(15), 3341–3356.

    Article  CAS  PubMed  Google Scholar 

  • Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107(42), 18191–18196.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “CEITEC – Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund. We wish to thank Natasa Kovacevic for her assistance with our structural PLS pipelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Joel Shaw.

Ethics declarations

Funding

This work was supported by the project “CEITEC – Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Review Board of St. Anne’s Hospital, Brno, and conformed to the Declaration of Helsinki (1964). Written informed consent was obtained from every participant prior to the experiment.

Electronic supplementary material

Supplementary Figure 1

Meta-analytic co-activation matrix. Meta-analytic connectivity modelling (MACM) was employed to compare the probability of co-activation between cells comprising the positive and negative pattern of structural covariance, and perform a behavioral characterisation of each pattern. The matrix presents the standardized probability of co-activation among each VOI (rows) when each other VOI served as a seed (columns; see Multi-analytic Connectivity Modelling). For abbreviations see Table 1. (JPEG 215 kb)

High resolution (TIFF 12299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, D.J., Mareček, R. & Brázdil, M. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu. Brain Imaging and Behavior 10, 1068–1079 (2016). https://doi.org/10.1007/s11682-015-9471-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9471-8

Keywords

Navigation