Skip to main content
Log in

Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

A relatively underexplored question in fMRI is whether there are intrinsic differences in terms of signal composition patterns that can effectively characterize and differentiate task-based or resting state fMRI (tfMRI or rsfMRI) signals. In this paper, we propose a novel two-stage sparse representation framework to examine the fundamental difference between tfMRI and rsfMRI signals. Specifically, in the first stage, the whole-brain tfMRI or rsfMRI signals of each subject were composed into a big data matrix, which was then factorized into a subject-specific dictionary matrix and a weight coefficient matrix for sparse representation. In the second stage, all of the dictionary matrices from both tfMRI/rsfMRI data across multiple subjects were composed into another big data-matrix, which was further sparsely represented by a cross-subjects common dictionary and a weight matrix. This framework has been applied on the recently publicly released Human Connectome Project (HCP) fMRI data and experimental results revealed that there are distinctive and descriptive atoms in the cross-subjects common dictionary that can effectively characterize and differentiate tfMRI and rsfMRI signals, achieving 100 % classification accuracy. Moreover, our methods and results can be meaningfully interpreted, e.g., the well-known default mode network (DMN) activities can be recovered from the very noisy and heterogeneous aggregated big-data of tfMRI and rsfMRI signals across all subjects in HCP Q1 release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abolghasemi, V., Ferdowsi, S., Sanei, S. (2013). Fast and incoherent dictionary learning algorithms with application to fMRI. Signal, Image and Video Processing.

  • Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8(4), 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  • Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M., Glasser, M.F., Curtiss, S., Dixit, S., Feldt, C., Nolan, D., Bryant, E., Hartley, T., Footer, O., Bjork, J.M., Poldrack, R., Smith, S., Johansen-Berg, H., Snyder, A.Z., Van Essen, D.C., WU-Minn HCP Consortium. (2013). Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage.

  • Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3(3), 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Bullmore, E., Brammer, M., Williams, S., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R., & Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance in Medicine, 35(2), 261–277.

    Article  CAS  PubMed  Google Scholar 

  • Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J., & Brammer, M. (2003). Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Statistical Methods in Medical Research, 12(5), 375–399.

    Article  PubMed  Google Scholar 

  • Calhoun, V.D., et al. (2011). fMRI Activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. NeuroImage, 14(5), 1080–1088, 2001.

  • Chih C.C., & Chih J.L. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27.

  • Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D’Ardenne, K., Richter, W., Cohen, J. D., & Haxby, J. (2009). Independent component analysis for brain fMRI does not select for independence. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10415–10422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descombes, X., Kruggel, F., & von Cramon, D. Y. (1998). fMRI signal restoration using a spatio-temporal markov random field preserving transitions. NeuroImage, 8(4), 340–349.

    Article  CAS  PubMed  Google Scholar 

  • Foland, L., & Glover, G.H. (2004). Scanner quality assurance for longitudinal or multicenter fMRI studies, In International Society for Magnetic Resonance Imaging. 12th Annual Meeting of the International Society for Magnetic Resonance Imaging (ISMRM).

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Review Neuroscience, 8, 700–711.

    Article  CAS  Google Scholar 

  • Friedman, L., & Glover, G. H. (2006). Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging, 23(6), 827–839.

    Article  PubMed  Google Scholar 

  • Friston, KJ., Holmes, AP., Worsley, KJ. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, V2-I4: 189–210.

  • Handwerker, D. A., Ollinger, J. M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 1639–1651.

    Article  PubMed  Google Scholar 

  • Hartvig, N. V., & Jensen, J. L. (2000). Spatial mixture modeling of fmri data. Human Brain Mapping, 11(4), 233–248.

    Article  CAS  PubMed  Google Scholar 

  • Heeger, D. J., & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Review Neuroscience, 3(2), 142–152.

    Article  CAS  Google Scholar 

  • Hu, X., & Norris, D. G. (2004). Advances in high-field magnetic resonance imaging. Annual Review of Biomedical Engineering, 6, 157–184.

    Article  CAS  PubMed  Google Scholar 

  • Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T. W., & Sejnowski, T. J. (2003). Dictionary learning algorithms for sparse representation. Neural Computation, 15(2), 349–396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, K., Tak, S., & Ye, J. C. (2011). A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Transactions on Medical Imaging, 30(5), 1076–1089.

    Article  PubMed  Google Scholar 

  • Lee, J., Jeong, Y., Ye, J.C. (2013). Group sparse dictionary learning and inference for resting-state fMRI analysis of Alzheimer’s disease. ISBI.

  • Lewicki, M., & Sejnowski, T. (2000). Learning overcomplete representations. Neural Computation, 12(2), 337–365.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Namburi, P., Yu, Z., Guan, C., Feng, J., & Gu, Z. (2009). Voxel selection in FMRI data analysis based on sparse representation. IEEE Transactions on Biomedical Engineering, 56(10), 2439–2451.

    Article  PubMed  Google Scholar 

  • Li, Y., Long, J., He, L., Lu, H., Gu, Z., et al. (2012). A sparse representation-based algorithm for pattern localization in brain imaging data analysis. PLoS ONE, 7(12), e50332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., Zhang, J., Hu, X., Li, J., Liu, T. (2013). Dynamic functional connectomics signatures for characterization and differentiation of PTSD Patients, in press, Human Brain Mapping.

  • Linden, D. E., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F. E., Goebel, R., & Dierks, T. (1999). The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9(8), 815–823.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., & Puthusserypady, S. (2007). fMRI data analysis with nonstationary noise models: a Bayesian approach. IEEE Transactions on Biomedical Engineering, 54, 1621–1630.

    Article  PubMed  Google Scholar 

  • Lv, J., Jiang, X., Li, X., Zhu, D., Chen, H., Zhang, T., Zhang, S., Hu, X., Han, J., Huang, H., Zhang, J., Guo, L., Liu, T. (2014a). Sparse representation of whole-brain FMRI signals for identification of functional networks, in press, Medical Image Analysis.

  • Lv, J., Jiang, X., Li, X., Zhu, D., Zhang, S., Zhao, S., Chen, H., Zhang, T., Hu, X., Han, J, Ye, J, Guo, L, Liu, T. (2014b). Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function, accepted, IEEE Transactions on Biomedical Engineering.

  • Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2001). Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience, 104(3), 667–676.

    Article  CAS  PubMed  Google Scholar 

  • Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18(1), 30–41.

    Article  PubMed  Google Scholar 

  • Mairal, J., Bach, Francis., Ponce, J., Sapiro, G. (2009). Online dictionary learning for sparse coding. In Proceedings of the International Conference on Machine Learning (ICML).

  • McGonigle, D. J., Howseman, A. M., Athwal, B. S., Friston, K. J., Frackowiak, R. S. J., & Holmes, A. P. (2000). Variability in fMRI: an examination of intersession differences. NeuroImage, 11(6), 708–734.

    Article  CAS  PubMed  Google Scholar 

  • McKeown, M. J., et al. (1998). Spatially independent activity patterns in functional MRI data during the Stroop color-naming task. PNAS, 95(3), 803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, J., & Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 77(3), 586–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, F. A., Balslev, D., & Hansen, L. K. (2005). Mining the posterior cingulate: segregation between memory and pain components. NeuroImage, 27(3), 520–532.

    Article  PubMed  Google Scholar 

  • Oikonomou, V. P., Blekas, K., & Astrakas, L. (2012). A sparse and spatially constrained generative regression model for fMRI data analysis. IEEE Transactions on Biomedical Engineering, 59(1), 58–67.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, Y., Barth, M., Windischberger, C., Moser, E., & Thurner, S. (2004). Wavelet-based multifractal analysis of fMRI time series. NeuroImage, 22, 1195–1202.

    Article  PubMed  Google Scholar 

  • Simmons, A., Moore, E., & William, S. C. R. (1999). Quality control for functional magnetic resonance imaging using automated data analysis and shewhart charting. Magnetic Resonance in Medicine, 41(6), 1274–1278.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., Kelly, M., Laumann, T., Miller, K.L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A.Z., Vu, A.T., Woolrich, M.W., Xu, J., Yacoub, E., Uğurbil, K., Van Essen, D.C., Glasser, M.F., WU-Minn HCP Consortium. (2013). Resting-state fMRI in the Human Connectome Project. Neuroimage.

  • Steinmetz, H., & Seitz, R. J. (1991). Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia, 29, 1149–1161.

    Article  CAS  PubMed  Google Scholar 

  • Stocker, T., Schnneider, F., Klein, M., Habel, U., Kellermann, T., Ziles, K., & Shah, N. J. (2005). Automated quality assurance routines for fMRI data applied to a multicenter study. Human Brain Mapping, 25(2), 237–246.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., & Ugurbil, K. (2013). WU-Minn HCP consortium. The WU-Minn human connectome project: an overview. NeuroImage, 80(2013), 62–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolrich, M. W., Ripley, B., Brady, J., & Smith, S. (2001). Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage, 14(6), 1370–1386.

    Article  CAS  PubMed  Google Scholar 

  • Woolrich, M. W., Jenkinson, M., Brady, J. M., & Smith, S. M. (2014). Fully bayesian spatio-temporal modeling of fmri data. IEEE Transactions on Medical Imaging, 23(2), 213–231.

    Article  Google Scholar 

  • Worsley, K. J. (1997). An overview and some new developments in the statistical analysis of PET and fMRI data. Human Brain Mapping, 5(4), 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time series revisited again. NeuroImage, 2, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Wright, J., et al. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6), 1031–1044.

    Article  Google Scholar 

  • Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F., & Kamitani, Y. (2008). Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage, 42(4), 1414–1429.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T Liu was supported by NSF CAREER Award (IIS-1149260), NIH R01 DA-033393, NIH R01 AG-042599, NSF CBET-1302089 and NSF BCS-1439051. L Guo was supported by the NSFC #61273362.

Conflict of Interest

Shu Zhang, Xiang Li, Jinglei Lv, Xi Jiang, Lei Guo, and Tianming Liu declare that they have no conflicts of interest.

Informed Consent

Data used in this study were previously collected and archived in a data bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Liu.

Additional information

Shu Zhang and Xiang Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4041 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, X., Lv, J. et al. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging and Behavior 10, 21–32 (2016). https://doi.org/10.1007/s11682-015-9359-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9359-7

Keywords

Navigation