Skip to main content

Advertisement

Log in

A two-part preliminary investigation of encoding-related activation changes after moderate to severe traumatic brain injury: hyperactivation, repetition suppression, and the role of the prefrontal cortex

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) survivors typically exhibit significant learning and memory deficits and also frequently demonstrate hyperactivation during functional magnetic resonance imaging (fMRI) tasks involving working memory encoding and maintenance. However, it remains unclear whether the hyperactivation observed during such working memory tasks is also present during long-term memory encoding. The preliminary experiments presented here were designed to examine this question. In Experiment 1, 7 healthy controls (HC) and 7 patients with moderate to severe TBI encoded ecologically relevant object location associations (OLA) while undergoing fMRI and then completed a memory test outside of the fMRI environment. fMRI data analysis included only the correctly encoded trials and revealed hyperactivation in the TBI relative to HC group in regions critical for OLA encoding, including bilateral dorsal and ventral visual processing areas, bilateral frontoparietal working memory network regions, and the left medial temporal lobe. There was also an incidental finding that this hyperactivation persisted after multiple exposures to the same stimulus, which may indicate an attenuated repetition suppression effect that could ultimately contribute to cognitive fatigue and inefficient memory encoding after TBI. Experiment 2 directly assessed repetition suppression in some of the same HC and TBI participants. During early encoding trials, the TBI group showed large areas of hyperactivation in the right prefrontal cortex and bilateral posterior parietal cortices relative to the HC. Following additional exposure to these stimuli, the TBI group showed repetition suppression in visual and spatial processing regions, but continued to show hyperactivation in the right dorsolateral prefrontal cortex. Findings from these preliminary studies may reflect that increased reliance on cognitive control mechanisms following TBI extends to memory encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo, H., Kaplan, J., & Damasio, A. (2013). Cortical midline structures and autobiographical self processes: an activation-likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 7, 548.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arenth, P. M., Russell, K. C., Scanlon, J. M., Kessler, L. J., & Ricker, J. H. (2012). Encoding and recognition after traumatic brain injury: neuropsychological and functional magnetic resonance imaging findings. Journal of Clinical and Experimental Neuropsychology, 34(4), 333–344.

    Article  PubMed Central  PubMed  Google Scholar 

  • Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., & Montiero, M. G. (2001). AUDIT: The alcohol use disorders identification test. Guidelines for use in primary care (2nd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Baddeley, A. (2003). Working memory and language: an overview. Journal of Communication Disorders, 36, 189–208.

    Article  PubMed  Google Scholar 

  • Baddeley, A., Jarrold, C., & Vargha-Khadem, F. (2011). Working memory and the hippocampus. Journal of Cognitive Neuroscience, 23(12), 3855–3861.

    Article  PubMed  Google Scholar 

  • Beck, A. T., & Steer, R. A. (1990). Beck anxiety inventory manual. San Antonio: The Psychological Corporation Harcourt Brace Jovanovich, Inc.

    Google Scholar 

  • Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory manual (2nd ed.). San Antonio: Psychological Corporation.

    Google Scholar 

  • Buckner, R. L., Goodman, J., Burock, M., Rotte, M., Koutstaal, W., Schacter, D., et al. (1998). Functional-anatomic correlates of object priming in humans revealed by rapid presentation event related fMRI. Neuron, 20, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Cerasa, A., Gioia, M. C., Fera, F., Passamonti, L., Liguori, M., Lanza, P., et al. (2008). Ventrolateral prefrontal activity during working memory is modulated by MAO A genetic variation. Brain Research, 1201, 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of Neurological Science, 179, 34–42.

    Article  CAS  Google Scholar 

  • Christensen, B. K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., et al. (2008). Recovery of cognitive function after traumatic brain injury: a multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(Suppl. 2), S3–S15.

    Article  PubMed  Google Scholar 

  • Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lang, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 161–168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., et al. (2011). Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92, 519–530.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Aquirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.

    Article  PubMed  Google Scholar 

  • DeLuca, J. (2005). Fatigue: Its definition, its study and its future. In J. DeLuca (Ed.), Fatigue as a window to the brain (pp. 319–325). Cambridge: MIT Press.

    Google Scholar 

  • DeLuca, J., Schultheis, M. T., Madigan, N. K., Christodoulou, C., & Averill, A. (2000). Acquisition versus retrieval deficits in traumatic brain injury: implications for memory rehabilitation. Archives of Physical Medicine and Rehabilitation, 81(10), 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of Neurological Science, 270, 28–39.

    Article  Google Scholar 

  • Brain Injury Task Force Report to the Surgeon General. (2008). https://www.hsdl.org/?view&did=482727

  • Faul, M., Xu, L., Wald, M. M., & Coronado, V. G. (2010). Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.

    Google Scholar 

  • Fletcher, P. C., & Henson, R. N. A. (2001). Frontal lobes and human memory. Brain, 124(849), 881.

    Google Scholar 

  • Fletcher, P. C., Shallice, T., & Dolan, R. J. (1998). The functional roles of the prefrontal cortex in episodic memory. I. Encoding. Brain, 121(7), 1239–1248.

    Article  PubMed  Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, F. M., Grattan, K. D., Sasser, H., Corrigan, J. D., Rosenthal, M., Bushnik, T., et al. (2004). Five years after traumatic brain injury: a study of individual outcomes and predictors of change in function. NeuroRehabilitation, 19, 25–35.

    PubMed  Google Scholar 

  • Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Amaraneni, A., & Sathian, K. (2011a). Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia, 49(9), 2349–2361.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Deshpande, G., Hu, X. P., Moore, A. B., et al. (2011b). Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: a pilot study. Neurorehabilitation and Neural Repair, 25, 210–222.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14, 526–534.

    Article  PubMed  Google Scholar 

  • Hillary, F. G. (2011). Determining the nature of prefrontal cortex recruitment after traumatic brain injury: a response to Turner. Frontiers in Systems Neuroscience, 5, 24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27, 837–847.

    Article  PubMed  Google Scholar 

  • Hillary, F. G., Genova, H. M., Medaglia, J. D., Fitzpatrick, N. M., Chiou, K. S., Wardecker, B. M., et al. (2010). The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging and Behavior, 4, 141–154.

    Article  PubMed  Google Scholar 

  • Hillary, F. G., Medaglia, J. D., Gates, K., Molenaar, P. C., Slocomb, J., Peechatka, A., et al. (2011a). Examining working memory task acquisition in a disrupted neural network. Brain, 134, 1555–1570.

    Article  PubMed  Google Scholar 

  • Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D., Wang, J., et al. (2011b). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Himanen, L., Porthin, R., Isoniemi, H., Helenius, H., & Kurki, T. (2006). Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study. Neurology, 66, 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasahara, M., Menon, D. K., Slamond, C. H., Outtrim, J. G., Taylor Tavares, J. V., Carpenter, A., et al. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Injury, 25(12), 1170–1187.

    Article  PubMed  Google Scholar 

  • Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage, 50(4), 1648–1657.

    Article  PubMed  Google Scholar 

  • Kim, H. (2012). A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. NeuroImage, 61(4), 966–977.

    Article  CAS  PubMed  Google Scholar 

  • Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & DeLuca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23(5), 420–432.

    Article  CAS  PubMed  Google Scholar 

  • Mani, T. M., Miller, L. S., Yanasak, N., & Macciocchi, S. (2007). Evaluation of changes in motor and visual functional activation over time following moderate-to-severe brain injury. Brain Injury, 21(11), 1155–1163.

    Article  PubMed  Google Scholar 

  • Martinelli, P., Sperduti, M., & Piolino, P. (2013). Neural substrates of the self-memory system: new insights from a meta-analysis. Human Brain Mapping, 34(7), 1515–1529.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  • McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23(10), 1450–1467.

    Article  PubMed  Google Scholar 

  • McKay, C., Wertheimer, J. C., Fichtenberg, N. L., & Casey, J. E. (2008). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): clinical utility in a traumatic brain injury sample. The Clinical Neuropsychologist, 22, 228–241.

    Article  PubMed  Google Scholar 

  • Medaglia, J. D., Chiou, K. S., Slocomb, J., Fitzpatrick, N. M., Wardecker, B. M., Ramanathan, D., et al. (2012). The Less BOLD, the wiser: support for the latent resource hypothesis after traumatic brain injury. Human Brain Mapping, 33(4), 979–993.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. K., & Desimone, R. (1994). Parallel neuronal mechanisms for short term-memory. Science, 263, 520–522.

    Article  CAS  PubMed  Google Scholar 

  • Millis, S. R., & Ricker, J. H. (1994). Verbal learning patterns in moderate and severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 16(4), 498–507.

    Article  CAS  PubMed  Google Scholar 

  • Millis, S. R., Rosenthal, M., Novak, T. A., Sherer, M., Nick, T. G., Kreutzer, J. S., et al. (2001). Long-term neuropsychological outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(4), 343–355.

    Article  CAS  PubMed  Google Scholar 

  • Miotto, E. C., Savage, C. R., Evans, J. J., Wilson, B. A., Martins, M. G., Iaki, S., et al. (2006). Bilateral activation of the prefrontal cortex after strategic semantic cognitive training. Human Brain Mapping, 27, 288–295.

    Article  PubMed  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision – 2 cortical pathways. Trends in Neurosciences, 6(10), 414–417.

    Article  Google Scholar 

  • Muehlhan, M., Lueken, U., Wittchen, H. U., & Kirschbaum, C. (2011). The scanner as a stressor: evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session. International Journal of Psychophysiology, 79(2), 118–126.

    Article  PubMed  Google Scholar 

  • Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and location: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11, 424–446.

    Article  CAS  PubMed  Google Scholar 

  • Olver, J. H., Ponsford, J. L., & Curran, C. (1996). Outcomes following traumatic brain injury: a comparison between 2 and 5 years after injury. Brain Injury, 10, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., & Briggs, R. W. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741.

    Article  PubMed  Google Scholar 

  • Poldrack, R. A., & Gabrieli, J. D. (2001). Characterizing the neural mechanisms of skill learning and repetition priming: evidence from mirror reading. Brain, 124, 67–82.

    Article  CAS  PubMed  Google Scholar 

  • Postma, A., Kessels, R. P. C., & van Asselen, M. (2008). How the brain remembers and forgets where things are: the neurocognition of object-location memory. Neuroscience and Biobehavioral Reviews, 32, 1339–1345.

    Article  PubMed  Google Scholar 

  • Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(2), 310–319.

    Article  CAS  PubMed  Google Scholar 

  • Rice, N. J., Valyear, K. F., Goodale, M. A., Milner, A. D., & Culham, J. C. (2007). Orientation sensitivity to graspable objects: an fMRI adaptation study. NeuroImage, 36, T87–T93.

    Article  PubMed  Google Scholar 

  • Russell, K. C., Arenth, P. M., Scanlon, L. J., Kessler, L. J., & Ricker, J. H. (2011). A functional magnetic resonance imaging investigation of episodic memory after traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 33(5), 538–547.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rutland-Brown, W., Langlois, J. A., Thomas, K. E., & Xi, Y. L. (2006). Incidence of traumatic brain injury in the United States, 2003. Journal of Head Trauma Rehabilitation, 21(6), 544–548.

    Article  PubMed  Google Scholar 

  • Ryan, T. B., Sautter, S. W., Capps, C. F., Meneese, W., & Barth, J. T. (1992). Utilizing neuropsychological measures to predict vocational outcome in a head trauma population. Brain Injury, 6(2), 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Scheibel, R. S., Pearson, D. A., Faria, L. P., Kotrla, K. J., Aylward, E., Bachevlier, J., et al. (2003). An fMRI study of executive functioning after severe TBI. Brain Injury, 17(11), 919–930.

    Article  CAS  PubMed  Google Scholar 

  • Spaniol, J., Davidson, P. S. R., Kim, A. S. N., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia, 47(8–9), 1765–1779.

    Article  PubMed  Google Scholar 

  • Sperling, R. A., Bates, J. F., Chua, E. F., Cocchiarella, A. J., Rentz, D. M., Rosen, B. R., et al. (2003). FMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74(1), 44–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics, 31(6), 2013–2035.

    Article  Google Scholar 

  • Strangman, G. E., Goldstein, R., O’Neil-Pirozzi, T. M., Kelkar, D. I., Supelana, C., Burke, D., et al. (2009). Neurophysiological alterations during strategy-based verbal learning in traumatic brain injury. Neurorehabilitation and Neural Repair, 23(3), 226–236.

    Article  PubMed  Google Scholar 

  • Talairach, J. T., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.

    Google Scholar 

  • Teasdale, G., & Jennet, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2, 480–487.

    Google Scholar 

  • Thiel, C. M., Henson, R. N. A., Morris, J. S., Friston, K. J., & Dolan, R. J. (2001). Pharmacological modulation of behavioral and neuronal correlates of repetition priming. Journal of Neuroscience, 21(17), 6846–6852.

    CAS  PubMed  Google Scholar 

  • Thompson-Schill, S. L., D’Esposito, M., & Kan, I. P. (1999). Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron, 23, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Tombaugh, T. (1996). Test of memory malingering manual. New York: MultiHealth Systems.

    Google Scholar 

  • Turner, G. R., McIntosh, A. R., & Levine, B. (2011). Prefrontal engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience, 5, 1–12.

    Article  Google Scholar 

  • Vannini, P., Hedden, T., Sullivan, C., & Sperling, R. A. (2013). Differential functional response in the posteromedial cortices and hippocampus to stimulus repetition during successful memory encoding. Human Brain Mapping, 34(7), 1568–1578.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.

    Article  Google Scholar 

  • Wechsler, D. (2001). Wechsler Test of Adult Reading (WTAR). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wood, R. L. L., & Rutterford, N. A. (2006). Demographic and cognitive predictors of long-term psychosocial outcome following traumatic brain injury. Journal of the International Neuropsychological Society, 12, 350–358.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Felicia Goldstein and Dr. Suzanne Penna for their assistance with participant recruitment. Authors M. Meredith Gillis and Benjamin M. Hampstead have no conflict of interest. This research was supported by funding from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, and Rehabilitation Research and Development Service (grant B6366W to BMH). The contents of this manuscript do not represent the views of the Department of Veterans Affairs or the United States Government.

Conflict of Interest

M. Meredith Gillis and Benjamin M. Hampstead declare that they have no conflicts of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Hampstead.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillis, M.M., Hampstead, B.M. A two-part preliminary investigation of encoding-related activation changes after moderate to severe traumatic brain injury: hyperactivation, repetition suppression, and the role of the prefrontal cortex. Brain Imaging and Behavior 9, 801–820 (2015). https://doi.org/10.1007/s11682-014-9337-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9337-5

Keywords

Navigation