Skip to main content

Advertisement

Log in

The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer’s disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. doi:10.1016/j.jalz.2011.03.008.

    Article  Google Scholar 

  • Anderson, N. D., Ebert, P. L., Jennings, J. M., Grady, C. L., Cabeza, R., & Graham, S. J. (2008). Recollection- and familiarity-based memory in healthy aging and amnestic mild cognitive impairment. Neuropsychology, 22(2), 177–187. doi:10.1037/0894-4105.22.2.177.

    Article  PubMed  Google Scholar 

  • Bäckman, L., Andersson, J. L., Nyberg, L., Winblad, B., Nordberg, A., & Almkvist, O. (1999). Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology, 52(9), 1861–1870.

    Article  PubMed  Google Scholar 

  • Bartrés-Faz, D., Serra-Grabulosa, J. M., Sun, F. T., Solé-Padullés, C., Rami, L., Molinuevo, J. L., & D’Esposito, M. (2008). Functional connectivity of the hippocampus in elderly with mild memory dysfunction carrying the APOE epsilon4 allele. Neurobiology of Aging, 29(11), 1644–1653. doi:10.1016/j.neurobiolaging.2007.04.021.

    Article  PubMed  Google Scholar 

  • Bernard, F. A., Bullmore, E. T., Graham, K. S., Thompson, S. A., Hodges, J. R., & Fletcher, P. C. (2004). The hippocampal region is involved in successful recognition of both remote and recent famous faces. NeuroImage, 22(4), 1704–1714. doi:10.1016/j.neuroimage.2004.03.036.

    Article  PubMed  Google Scholar 

  • Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: insights from spatial processing. Nature Reviews. Neuroscience, 9(3), 182–194. doi:10.1038/nrn2335.

    Article  CAS  PubMed  Google Scholar 

  • Bokde, A. L. W., Ewers, M., & Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Progress in Neurobiology, 89(2), 125–133. doi:10.1016/j.pneurobio.2009.06.004.

    Article  PubMed  Google Scholar 

  • Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. NeuroImage, 49(1), 865–874. doi:10.1016/j.neuroimage.2009.08.066.

    Article  PubMed  Google Scholar 

  • Cabeza, R. E., & Dennis, N. A. (2012). “Frontal lobes and aging: deterioration and compensation,” in Principles of frontal lobe function, eds. Stuss, D. T. and Knight, R.885 T. (New York: Oxford University Press)

  • Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., & Sperling, R. A. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. The Journal of Neuroscience, 26(40), 10222–10231. doi:10.1523/JNEUROSCI. 2250-06.2006.

    Article  CAS  PubMed  Google Scholar 

  • Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360. doi:10.1016/j.neuroimage.2007.03.071.

    Article  PubMed  Google Scholar 

  • Della-Maggiore, V., Sekuler, A. B., Grady, C. L., Bennett, P. J., Sekuler, R., & McIntosh, A. R. (2000). Corticolimbic interactions associated with performance on a short-term memory task are modified by age. The Journal of Neuroscience, 20(22), 8410–8416.

    CAS  PubMed  Google Scholar 

  • Dennis, N. A., & Cabeza, R. E. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (pp. 1–54).

    Google Scholar 

  • Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiology of Aging, 32(12), 2318. doi:10.1016/j.neurobiolaging.2010.04.004.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends in Cognitive Sciences, 11(9), 379–386. doi:10.1016/j.tics.2007.08.001.

    Article  PubMed  Google Scholar 

  • Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., & Sperling, R. A. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65(3), 404–411. doi:10.1212/01.wnl.0000171450.97464.49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology, 35(1), 86–104. doi:10.1038/npp.2009.126.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickerson, B. C., Salat, D. H., Bates, J. F., Atiya, M., Killiany, R. J., Greve, D. N., & Sperling, R. A. (2004). Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology, 56(1), 27–35. doi:10.1002/ana.20163.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia, 46(6), 1624–1635. doi:10.1016/j.neuropsychologia.2007.11.030.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 5915–5920. doi:10.1073/pnas.0801489105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eickhoff, S., Stephan, K. E., Mohlberg, H., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325–1335.

    Article  PubMed  Google Scholar 

  • Erk, S., Spottke, A., Meisen, A., Wagner, M., Walter, H., & Jessen, F. (2011). Evidence of neuronal compensation during episodic memory in subjective memory impairment. Archives of General Psychiatry, 68(8), 845–852. doi:10.1001/archgenpsychiatry.2011.80.

    Article  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi:10.1073/pnas.0504136102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grady, C. L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124(C), 127–144. doi:10.1196/annals.1440.009.

    Article  PubMed  Google Scholar 

  • Grady, C. L. (2012). The cognitive neuroscience of ageing. Nature Reviews. Neuroscience, 13, 491–505. doi:10.1038/nrn3256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grady, C. L., Protzner, A. B., Kovacevic, N., Strother, S. C., Afshin-Pour, B., Wojtowicz, M., & McIntosh, A. R. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20(6), 1432–1447. doi:10.1093/cercor/bhp207.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.

    Article  CAS  PubMed  Google Scholar 

  • Irish, M., Lawlor, B. A., Coen, R. F., & O’Mara, S. M. (2011). Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation. BMC Neuroscience, 12(1), 80. doi:10.1186/1471-2202-12-80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson, S. C., Schmitz, T. W., Moritz, C. H., Meyerand, M. E., Rowley, H. A., Alexander, A. L., & Alexander, G. E. (2006). Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiology of Aging, 27(11), 1604–1612. doi:10.1016/j.neurobiolaging.2005.09.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, H., Daselaar, S. M., & Cabeza, R. (2010). Overlapping brain activity between episodic memory encoding and retrieval: roles of the task-positive and task-negative networks. NeuroImage, 49(1), 1045–1054. doi:10.1016/j.neuroimage.2009.07.058.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kircher, T., Weis, S., Leube, D., Freymann, K., Erb, M., Jessen, F., & Krach, S. (2008). Anterior hippocampus orchestrates successful encoding and retrieval of non-relational memory: an event-related fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 258(6), 363–372. doi:10.1007/s00406-008-0805-z.

    Article  PubMed  Google Scholar 

  • Kirwan, C. B., & Stark, C. E. L. (2004). Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus, 14(7), 919–930. doi:10.1002/hipo.20014.

    Article  PubMed Central  PubMed  Google Scholar 

  • Langenecker, S. A., Briceno, E. M., Hamid, N. M., & Nielson, K. A. (2007). An evaluation of distinct volumetric and functional MRI contributions toward understanding age and task performance: a study in the basal ganglia. Brain Research, 1135(1), 58–68. doi:10.1016/j.brainres.2006.11.068.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, K. Z. H., & Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neuroscience and Biobehavioral Reviews, 26, 777–783.

    Article  PubMed  Google Scholar 

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., & Buckner, R. L. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14504–14509. doi:10.1073/pnas.2235925100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machulda, M. M., Ward, H. A., Borowski, B., Gunter, J. L., Cha, R. H., O’Brien, P. C., & Jack, C. R. (2003). Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology, 61(4), 500–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126–135. doi:10.1016/j.tics.2006.12.003.

    Article  PubMed  Google Scholar 

  • McCormick, C., Moscovitch, M., Protzner, A. B., Huber, C. G., & McAndrews, M. P. (2010). Hippocampal-neocortical networks differ during encoding and retrieval of relational memory: functional and effective connectivity analyses. Neuropsychologia, 48(11), 3272–3281. doi:10.1016/j.neuropsychologia.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  • Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36(4), 630–633.

    Article  Google Scholar 

  • Morcom, A. M., Li, J., & Rugg, M. D. (2007). Age effects on the neural correlates of episodic retrieval: increased cortical recruitment with matched performance. Cerebral Cortex, 17(11), 2491–2506. doi:10.1093/cercor/bhl155.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M. (2000). Adult age differences in memory performance: tests of an associative deficit hypothesis. Journal of Experimental Psychology Learning, 26, 1170–1187.

    Article  CAS  Google Scholar 

  • Naveh-Benjamin, M., Guez, J., Kilb, A., & Reedy, S. (2004). The associative memory deficit of older adults: further support using face-name associations. Psychology and Aging, 19(3), 541–546. doi:10.1037/0882-7974.19.3.541.

    Article  PubMed  Google Scholar 

  • O’Brien, J. L., O’Keefe, K. M., LaViolette, P. S., DeLuca, A. N., Blacker, D., Dickerson, B. C., & Sperling, R. A. (2010). Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 74(24), 1969–1976. doi:10.1212/WNL.0b013e3181e3966e.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oedekoven, C. S. H., Jansen, A., Kircher, T. T., & Leube, D. T. (2013). Age-related changes in parietal lobe activation during an episodic memory retrieval task. Journal of Neural Transmission, 120(5), 799–806. doi:10.1007/s00702-012-0904-x.

    Article  PubMed  Google Scholar 

  • Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: a meta-analysis. Psychology and Aging, 23(1), 104–118. doi:10.1037/0882-7974.23.1.104.

    Article  PubMed  Google Scholar 

  • Pariente, J., Cole, S., Henson, R., Clare, L., Kennedy, A., Rossor, M., & Frackowiak, R. S. J. (2005). Alzheimer’s patients engage an alternative network during a memory task. Annals of Neurology, 58(6), 870–879. doi:10.1002/ana.20653.

    Article  PubMed  Google Scholar 

  • Paulus, F. M., Krach, S., Bedenbender, J., Pyka, M., Sommer, J., Krug, A., & Jansen, A. (2013). Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Human Brain Mapping, 34(2), 304–313. doi:10.1002/hbm.21434.

    Article  PubMed  Google Scholar 

  • Persson, J., Kalpouzos, G., Nilsson, L.-G., Ryberg, M., & Nyberg, L. (2011). Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus, 21(7), 753–766. doi:10.1002/hipo.20794.

    Article  PubMed  Google Scholar 

  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. doi:10.1111/j.1365-2796.2004.01388.x.

    Article  CAS  PubMed  Google Scholar 

  • Petrella, J. R., Krishnan, S., Slavin, M. J., Tran, T. T., Murty, L., & Doraiswamy, P. M. (2006). Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology, 240(1), 177–186. doi:10.1148/radiol.2401050739.

    Article  PubMed  Google Scholar 

  • Pike, K. E., Kinsella, G. J., Ong, B., Mullaly, E., Rand, E., Storey, E., & Parsons, S. (2012). Names and numberplates: quasi-everyday associative memory tasks for distinguishing amnestic mild cognitive impairment from healthy aging. Journal of Clinical and Experimental Neuropsychology, 34(3), 269–278. doi:10.1080/13803395.2011.633498.

    Article  PubMed  Google Scholar 

  • Pires, C., Silva, D., Maroco, J., Ginó, S., Mendes, T., Schmand, B. A., & de Mendonça, A. (2012). Memory complaints associated with seeking clinical care. International Journal of Alzheimer’s Disease, 2012, 725329. doi:10.1155/2012/725329.

    PubMed Central  PubMed  Google Scholar 

  • Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory and learning systems in the human brain. Nature, 414, 546–550.

    Article  CAS  PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8(2–3), 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Raz, N., & Rodrigue, K. R. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Park, D. C. (2010). Human neuroscience and the aging mind: a new look at old problems. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65(4), 405–415. doi:10.1093/geronb/gbq035.

    Article  Google Scholar 

  • Rieckmann, A., Fischer, H., & Bäckman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance. NeuroImage, 50, 1303–1312. doi:10.1016/j.neuroimage.2010.01.015.

    Article  PubMed  Google Scholar 

  • Salami, A., Eriksson, J., & Nyberg, L. (2012). Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. The Journal of Neuroscience, 32(31), 10749–10757. doi:10.1523/JNEUROSCI. 0278-12.2012.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, N. W., Doeller, C. F., Schjeide, B. M., Schröder, J., Frensch, P. A., Bertram, L., & Li, S. C. (2013). Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus, 23(10), 919–930.

    Article  CAS  PubMed  Google Scholar 

  • Schwindt, G. C., & Black, S. E. (2009). Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. NeuroImage, 45(1), 181–190. doi:10.1016/j.neuroimage.2008.11.024.

    Article  PubMed  Google Scholar 

  • Small, S. A., Nava, A. S., Perera, G. M., DeLaPaz, R., Mayeux, R., & Stern, Y. (2001). Circuit mechanisms underlying memory encoding and retrieval in the long axis of the hippocampal formation. Nature Neuroscience, 4(4), 442–449. doi:10.1038/86115.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, R. A. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 44–50. doi:10.1136/jnnp.74.1.44.

    Article  CAS  Google Scholar 

  • Spreng, R. N., Wojtowicz, M., & Grady, C. L. (2010). Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neuroscience and Biobehavioral Reviews, 34(8), 1178–1194. doi:10.1016/j.neubiorev.2010.01.009.

    Article  PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380–1386.

    Article  CAS  PubMed  Google Scholar 

  • Toro, R., Fox, P. T., & Paus, T. (2008). Functional coactivation map of the human brain. Cerebral Cortex, 18(11), 2553–2559. doi:10.1093/cercor/bhn014.

    Article  PubMed Central  PubMed  Google Scholar 

  • Troyer, A. K., D’Souza, N. A., Vandermorris, S., & Murphy, K. J. (2011). Age-related differences in associative memory depend on the types of associations that are formed. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 18(3), 340–352. doi:10.1080/13825585.2011.553273.

    Article  PubMed  Google Scholar 

  • Tsukiura, T., Sekiguchi, A., Yomogida, Y., Nakagawa, S., Shigemune, Y., Kambara, T., & Kawashima, R. (2011). Effects of aging on hippocampal and anterior temporal activations during successful retrieval of memory for face-name associations. Journal of Cognitive Neuroscience, 23(1), 200–213. doi:10.1162/jocn.2010.21476.

    Article  PubMed  Google Scholar 

  • Vannini, P., O’Brien, J., O’Keefe, K., Pihlajamaki, M., Laviolette, P., & Sperling, R. A. (2011). What goes down must come up: role of the posteromedial cortices in encoding and retrieval. Cerebral Cortex, 21(1), 22–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. doi:10.1152/jn.90355.2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., van Spaendonck, K. P., Kremer, H. P. H., & Fernandez, G. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Wais, P. E. (2008). FMRI signals associated with memory strength in the medial temporal lobes: a meta-analysis. Neuropsychologia, 46(14), 3185–3196. doi:10.1016/j.neuropsychologia.2008.08.025.

    Article  PubMed  Google Scholar 

  • Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage, 31(2), 496–504. doi:10.1016/j.neuroimage.2005.12.033.

    Article  PubMed  Google Scholar 

  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798. doi:10.1016/j.neurobiolaging.2006.03.002.

    Article  PubMed  Google Scholar 

  • Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2003). Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science, 299(5606), 577–580. doi:10.1126/science.1077775.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the volunteers for their time and their interest in research, and the core unit Brainimaging for their support. The study was funded by an intramural grant from the University Clinic Giessen and Marburg (Project Number 31/2009 MR).

Conflict of interest

Christiane S. H. Oedekoven, Andreas Jansen, James L. Keidel, Tilo Kircher, and Dirk Leube declare that they have no conflicts of interest with respect to the research, authorship, and/or publication of this article.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane S. H. Oedekoven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oedekoven, C.S.H., Jansen, A., Keidel, J.L. et al. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks. Brain Imaging and Behavior 9, 776–789 (2015). https://doi.org/10.1007/s11682-014-9335-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9335-7

Keywords

Navigation