Skip to main content
Log in

Variation of basic density, calorific value and volumetric shrinkage within tree height and tree age of Ugandan grown Eucalyptus grandis wood

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Insufficient knowledge on Ugandan grown Eucalyptus grandis W. Hill ex Maiden wood properties, high demand, and processing challenges led to a study into its physical properties. We obtained the variation of basic density (BD), calorific value (CV) and volumetric shrinkage (VS) within tree height and tree-age of E. grandis, and its appropriate use based on these properties. Trees with good boles were harvested from Kabarole District in western Uganda to produce specimens as prescribed by British Standards and ASTM standard wood testing procedures. Secondary data reviews and statistical analysis using ANOVA, Tukey’s test and multivariate analysis were done to obtain property estimates and their variation within trees and amongst tree ages. The mean BD of E. grandis is 413.6, 380.5, 471.0, and 501.1 kg m−3 at 3, 6, 9, and 12 years, respectively, showing significant increase with tree age (p = 0.003). The pattern of BD with tree height showed a reduction with tree height although with higher values in the middle portion of the tree. The CV increases (p = 0.014) with tree age and reduces with tree height with values of 14,560.32, 15,447.3, 16,079.11, and 16,932.6 kJ kg−1 at 3, 6, 9, and 12 years, respectively. The percentage VS was 11.02, 9.84, 12.31, and 14.45 for 3-, 6-, 9-, and 12-year-old trees, respectively, and it did not vary significantly (p = 0.088) with tree height. Basing on these property values, E. grandis wood could be used for scaffolding, light constructions and fuel wood production. Its seasoning needs to be longer with well monitored drying schedules to reduce seasoning defects caused by the high VS. Further studies on strength properties, seasoning schedules, panel products properties and tree-age chemical variations would improve the knowledge about its wood quality and would enhance its efficient utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASTM D729 (2008) Standard test methods for density and specific gravity (relative density) of wood and wood-based materials. American Society for Testing and Materials, West Conshohocken, p 6

    Google Scholar 

  • ASTM E711-87 (2004) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Annual book of ASTM Standards, vol 87. American Society for Testing and Materials, West Conshohocken, pp 1–8

    Google Scholar 

  • Bacher M, Krzosek S (2014) Timber bending and tension strength classes in European Standards. For Wood Technol 88:14–22

    Google Scholar 

  • Bal BC, Bektaş İ (2013) The Effects of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis. Dry Technol 31(4):479–485

    CAS  Google Scholar 

  • Bamber RK, Humphreys FR (1963) A preliminary study of some wood properties of Eucalyptus grandis (Hill) Maiden. J Inst Wood Sci 11(1):66–70

    Google Scholar 

  • Batista DC, Hegedus CEN, Pizzol VD, Corteletti RB (2013) Partial shrinkage and proportion of cracks in juvenile and adult wood of Eucalyptus grandis W. Hill ex Maiden. Rev Ciênc Madeira 4(2):202–213

    Google Scholar 

  • Bhat KM, Bhat KK, Dhamodaran TK (1990) Wood density and fiber length of Eucalyptus grandis grown in Kerala. Wood Fiber Sci 22(1):54–61

    Google Scholar 

  • Crafford PL, Wessels CB (2016) The potential of young, green finger-jointed Eucalyptus grandis lumber for roof truss manufacturing. South For 78(1):61–71

    Google Scholar 

  • De Castro SJ, Tarcísio J, Oliveira S, Xavier BA, Vinícius E, Castro R (2006) Influence of age and radial position on the volumetric and linear shrinkage of Eucalyptus grandis Hill ex. Maiden wood. Rev Árvore 30(1):803–810

    Google Scholar 

  • Eberhard AA (1988) Calorific values and combustion characteristics of South African grown fuelwoods. University of Cape Town, Cape Town, p 40

    Google Scholar 

  • FAO (2015) Wood fuels handbook. Food and Agricultural Organisation of the United Nations, Rome, p 31

    Google Scholar 

  • Forbes BW (2012) Physical and mechanical property variation of black ash (Fraxinus nigra) grown in the thunder bay seed zone. Master’s Thesis, Lakehead University, p 209

  • FPL (1999) Wood handbook-wood as an engineering material. Forest Products Laboratory, Madison, p 466

    Google Scholar 

  • Githiomi JK, Kariuki JG (2010) Wood basic density of Eucalyptus grandis from plantations in central rift valley, Kenya: variation with age, height level and between sapwood and heartwood. J Trop For Sci 22(3):281–286

    Google Scholar 

  • Hann R (1969) Longitudinal shrinkage in seven species of wood. Forest Producst Laboratory, Madison, p 15

    Google Scholar 

  • Held C, Techel G, Windhorst K (2010) Timber market study contact. Sawlog Production Grant Scheme (SPGS), Kampala, p 39

    Google Scholar 

  • Jozsa LA, Middleton GR (1994) A discussion of wood quality attributes and their practical implications. Forintek Canada Corporation, Vancouver, p 42

    Google Scholar 

  • Kambugu RK, Banana AY, Okure M (2013) Exploring the linkage between commodity chain performance: a case study of sawn wood in Uganda. Open For Sci J 6:1–6

    Google Scholar 

  • Kityo PW, Plumpture RA (1997) The Uganda timber users handbook. Common Wealth Secretariat, London, p 78

    Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S (2010) Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J For Res 21(4):514–516

    CAS  Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S (2011) Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy 35(3):1339–1344

    CAS  Google Scholar 

  • Lemenih M, Bekele T (2004) Effect of age on calorific value and some mechanical properties of three Eucalyptus species grown in Ethiopia. Biomass Bioenergy 27(3):223–232

    Google Scholar 

  • Mckinley RB, Shelbourne CJA, Harris JM, Young GD (2000) Variation in whole-tree basic wood density for a range of plantation species grown in New Zealand. NZ J For Sci 30(3):436–446

    Google Scholar 

  • MoEMD (2013) Biomass energy strategy (BEST). Ministry of Energy and Mineral Development of the Republic of Uganda (MoEMD), Kampala, p 113

    Google Scholar 

  • MoWE (2016) State of Uganda’s forestry 2016. Ministry of Water and Environment of the Republic of Uganda (MoWE), Kampala, p 139

    Google Scholar 

  • Munalula F, Meincken M (2009) An evaluation of South African fuelwood with regards to calorific value and environmental impact. Biomass Bioenergy 33(3):415–420

    CAS  Google Scholar 

  • Ojelel S, Otiti T, Mugisha S (2011) Fuel value indices of selected woodfuel species used in Masindi and Nebbi districts of Uganda. J Energy Sustain Soc 5(14):1–6

    Google Scholar 

  • Palermo GDM, Latorraca JDF, De Carvalho AM, Calonego FW, Severo ETD (2015) Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. Eur J Wood Wood Prod 73(6):775–780

    CAS  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27(6):613–620

    Google Scholar 

  • Pelletier MC, Henson M, Boyton S, Thomas D, Vanclay JK (2008) Genetic variation in shrinkage properties of Eucalyptus pilularis assessed using increment cores and test blocks. NZ J For Sci 38(1):194–210

    Google Scholar 

  • Plessis M (2012) A fibre optimisation index developed from a material investigation of Eucalyptus grandis for the Kraft pulping process. Doctorial Dissertation, Stellenbosch University

  • Poku K, Wu Q, Vlosky RP (2001) Wood properties and their variations within the tree stem of lesser-used species of tropical hardwood from Ghana. Wood Fibre Sci 32(2):284–291

    Google Scholar 

  • Rücker G (2005) Spatial variability of soils on national and hillslope scale in Uganda. Ecology and development series, vol 49, no 24. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Scherr SJ, Shames S, Friedman R (2012) From climate-smart agriculture to climate-smart landscapes. Agric Food Secur 1(1):12

    Google Scholar 

  • Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004) Wood density and anatomy of water-limited eucalypts. Tree Physiol 24(11):1295–1302

    PubMed  Google Scholar 

  • Sette CR Jr, Oliveira IRD, Filho MT, Yamaji FM, Laclau JP (2012) Efeito da idade e posição de amostragem na densidade ecaracterísticas anatômicas da madeira de Eucalyptus grandis. Rev Árvore 36:1183–1190

    Google Scholar 

  • Singh T, Kostecky MM (1986) Calorific value variations in components of 10 Canadian tree species. Can J For Res 16:1378–1381

    Google Scholar 

  • SPGS (2010) SPGS timber market study. SPGS, Kampala, p 39

    Google Scholar 

  • Sseremba OE, Kaboggoza JRS, Ziraba NY, Mugabi P, Banana AY, Zziwa A, Ndawula J (2011) Timber management practices and timber species used by small scale furniture workshops in Uganda. Maderas Cienc Tecnol 13(3):347–358

    Google Scholar 

  • Sseremba OE, Mugabi P, Banana AY (2016) Within-tree and tree-age variation of selected anatomical properties of the wood of Ugandan-grown Eucalyptus grandis. For Prod J 66(7–8):433–442

    Google Scholar 

  • Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 35(5):1663–1667

    CAS  Google Scholar 

  • Tomazello FM (1987) Variação radial da densidade básica e da estrutura anatômica da madeira do Eucalyptus globulus, E. pellita e E. acmenioides. Revista IPEF 36:35–42

    Google Scholar 

  • Turinawe H, Mugabi P, Tweheyo M (2014) Density, calorific value and cleavage strength of selected hybrid Eucalypts grown in Uganda. Maderas Cienc Tecnol 16(1):13–24

    Google Scholar 

  • Wessels CB, Crafford PL, Toit BD, Grahn T, Johansson M, Lundqvist SO, Seifert T (2016) Variation in physical and mechanical properties from three drought tolerant Eucalyptus species grown on the dry west coast of Southern Africa. Eur J Wood Wood Prod 74:563–575

    Google Scholar 

  • Wilkins AP, Horne R (1991) Wood-density variation of young plantation-grown Eucalyptus grandis in response to silvicultural treatments. For Ecol Manag 40(1–2):39–50

    Google Scholar 

  • Winandy JE (1994) Wood properties, vol 4. Forest Products Laboratory, Madison, pp 549–561

    Google Scholar 

  • Wu YQ, Hayashi K, Sugimori M, Liu Y, Cai Y, Wu YQ, Sugimori M (2006) Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. J Wood Sci 52(3):187–194

    Google Scholar 

  • WWF (2012) National timber trade and FLEGT solutions for Uganda. WWF Uganda Country Office, Kampala, p 76

    Google Scholar 

  • Zanuncio AJV, Motta JP, Da Silveira TA, De Sá FE, Trugilho PF (2014) Physical and colorimetric changes in Eucalyptus grandis wood after heat treatment. BioResources 9(1):293–302

    Google Scholar 

  • Zobel BJ, Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin, p 363

    Google Scholar 

  • Zziwa A, Kaboggoza JRS, Mwakali JA, Banana AY, Kyeyune RK (2006) Physical and mechanical properties of some less utilised tropical timber tree species growing in Uganda. Uganda J Agric Sci 12(1):29–37

    Google Scholar 

  • Zziwa A, Ziraba YN, Mwakali JA (2009) Timber use practices in Uganda’s building construction industry: current situation and future prospects. J Inst Wood Sci 19(1):48–53

    Google Scholar 

  • Zziwa A, Ziraba YN, Mwakali JA (2010) Strength properties of selected Uganda timbers. Int Wood Prod J 1(1):21–27

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Carnegie Corporation of New York to Makerere University’s Directorate of Research and Graduate Training, and the cooperation with the Department of Department of Forestry and Wood Science, Stellenbosch University, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Emmanuel Sseremba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was funded from the Carnegie Corporation of New York to Makerere University’s Directorate of Research and Graduate Training.

The online version is available at https://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sseremba, O.E., Mugabi, P., Banana, A.Y. et al. Variation of basic density, calorific value and volumetric shrinkage within tree height and tree age of Ugandan grown Eucalyptus grandis wood. J. For. Res. 32, 503–512 (2021). https://doi.org/10.1007/s11676-020-01141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01141-7

Keywords

Navigation