Skip to main content
Log in

Increase of nitrogen to promote growth of poplar seedlings and enhance photosynthesis under NaCl stress

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The solution culture method was used to study the effect of increasing nitrogen on the growth and photosynthesis of poplar seedlings under 100 mmol L−1 NaCl stress. I Increase in nitrogen reduced stomatal limitation of leaves under NaCl stress, improved utilization of CO2 by mesophyll cells, enhanced photosynthetic carbon assimilation capacity, significantly alleviated saline damage of NaCl, and promoted the accumulation of aboveground and root biomass. I Increased nitrogen enhanced photochemical efficiency (ФPSII) and electron transport rates, relieved the reduction of maximum photochemical efficiency (Fv/Fm) under NaCl, and reduced the degree of photoinhibition caused by NaCl stress. Increased nitrogen applications reduced the proportion of energy dissipating in the form of ineffective heat energy and hence a greater proportion of light energy absorbed by leaves was allocated to photochemical reactions. Under treatment with increased nitrogen, the synergistic effect of heat dissipation and the xanthophyll cycle in the leaves effectively protected photosynthetic PSII and enhanced light energy utilization of leaves under NaCl stress. The increased nitrogen promoted photosynthetic electron supply and transport ability under NaCl stress evident in enhanced functioning of the oxygen-evolving complex on the electron donor side of PS II. It increased the ability of the receptor pool to accept electrons on the PSII electron acceptor side and improved the stability of thylakoid membranes under NaCl stress. Therefore, increasing nitrogen applications under NaCl stress can promote poplar growth by improving the efficiency of light energy utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali A, Tucker TC, Thompson TL, Salim M (2001) Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J Agron Crop Sci 186:223–228

    Article  Google Scholar 

  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrmahim M, Riaz M, Arif MS, Hafeez F, Al-webel MI, Shahzad AN (2017) Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res Int 24(14):12700–12712

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581(12):2247–2254

    Article  CAS  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6(8):2542–2554

    Article  CAS  Google Scholar 

  • Bhatnagar MP, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  Google Scholar 

  • Calderon JF, Louise EJ, Scow KM, Rolston DE (2000) Microbial response to simulated tillage in cultivated and uncultivated soils. Soil Biol Biochem 32(11):1547–1559

    Article  CAS  Google Scholar 

  • Chen JQ, Li MQ (1984) The relationship between nitrogen metabolism and photosynthesis in the leaves of higher plants. Plant Physiol Commun 1:1–8

    Google Scholar 

  • Cheng YW, Qi YC, Zhu Q, Chen X, Wang N, Zhao X, Chen HY, Cui XJ, Xu LL, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9(11):3100–3114

    Article  CAS  Google Scholar 

  • Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Aleksandrov V, Goltsev V, Kalaji MH (2016) Prompt chlorophyll a, fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J Photochem Photobiol Biol 157(7):22–31

    Article  Google Scholar 

  • Foyer C, Ferrario-Mery S, Noctor G (2001) Interactions between carbon and nitrogen metabolism. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 237–254

    Chapter  Google Scholar 

  • Gong B, Wen D, Vandenlangenberg K, Wei M, Wei M, Yang FJ, Shi QH, Wang XF (2013) Comparative effects of NaCl and NaHCO3, stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hortic 157(3):1–12

    Article  CAS  Google Scholar 

  • Goss R, Bǒhme K, Wihelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxathin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  CAS  Google Scholar 

  • Hu YB, Sun GY, Wang XC (2007) Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. J Plant Physiol 164:959–968

    Article  CAS  Google Scholar 

  • Huppe HC, Turpin DH (1994) Intergration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • Klepper LA, Flesher D, Hageman RH (1971) Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol 48:580–590

    Article  CAS  Google Scholar 

  • Li HD, Gao HY (2007) Effects of different nitrogen application rate on allocation of photosynthetic electron flux in rumex K-1 leaves. J Plant Physiol Mol Biol 33(5):417–424

    CAS  Google Scholar 

  • Li XP, Bjorkman O, Shi C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-A practical guide. J Exp Bot 51(345):659–668

    Article  CAS  Google Scholar 

  • Mi GH, Chen JF, Chun L, Guo YF, Tian QY, Zhang FS (2007) Advances in study of factors affecting soil N mineralization in grassland ecosystems. Plant Nutr Fertil Sci 13(1):155–159

    CAS  Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157(6):661–667

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  Google Scholar 

  • Nathawat NS, Kuhad MS, Goswami CL, Patel AL, Kumar R (2007) Interactive effect of N source on salinity on growth indices and ion content of Indian mustard. J Plant Nutr 30:569–598

    Article  CAS  Google Scholar 

  • Pompeiano A, Giannini V, Gaetani M, Vita F, Guglielminetti L, Bonari E, Volterrani M (2014) Response of warm-season grasses to N fertilization and salinity. Sci Hortic 177:92–98

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Robinson JM (1986) Carbon dioxide and nitrite photoassimilatory processes do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts. Plant Physiol 80:676–684

    Article  CAS  Google Scholar 

  • Shangguan ZP, Shao MA, Dyckmans J (2000) Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol 156(1):46–51

    Article  CAS  Google Scholar 

  • Skeffington MJS, Jeffrey DW (1988) Response of America maritime (Mill.)Willd and Plantago martima L. from an Irish salt marsh to nitrogen and salinity. New Phytol 110(3):399–408

    Article  Google Scholar 

  • Song J, Feng G, Tian CY, Zhang FS (2006) Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron, and Haloxylon persicum, in field or controlled conditions. Plant Sci 170(1):113–119

    Article  CAS  Google Scholar 

  • Song Y, Zhang YX, Guo N, Sun GY (2013) Effects of lights intensity on chlorophyll fluorescence characteristics and energy allocation pathways in leaves of Populus simonii × P. nigra seedlings after chilling stress. J Anhui Agric Sci 41(10):4421–4423

    Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52(2):147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61(1):32–42

    Article  CAS  Google Scholar 

  • Takahashi M, Shigeto J, Sakamoto A, Morikawa H (2017) Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav 12(10):e1376157

    Article  Google Scholar 

  • Tian JC, Wang XC, Liu GT (2010) The coupling and regulation between photosynthesis and nitrogen, carbon metablolism in plant. Chin Bull Life Sci 13(4):145–147

    Google Scholar 

  • Wang LY, Zhao KF (2004) Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr. J Plant Physiol Mol Biol 30(1):94–98

    Google Scholar 

  • Wang BS, Luttg U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-Pase in leaves of the halophyte Suaedasalsa. J Exp Bot 52(365):2355–2365

    Article  CAS  Google Scholar 

  • Wang CH, Xing XR, Han XG (2004) Advances in study of factors af fecting soil N mineralization in grassland ecosystems. Chin J Appl Ecol 15(11):2184–2188

    CAS  Google Scholar 

  • Wang XY, Wei SS, Dong ST, Liu P, Zhang JW, Zhao B (2015) Regulation of nitrogen on protein expression of summer maize (Zea mays L.) leaves at filling stage. Sci Agric Sin 48(9):1727–1736

    CAS  Google Scholar 

  • Wu H, Liu X, You L, Zhang LB, Zhou D, Feng JH, Zhao JM, Yu JB (2012) Effects of salinity on metabolic profiles, gene expressions, and antioxidant enzymes in Halophyte Suaeda salsa. J Plant Growth Regul 31(3):332–341

    Article  CAS  Google Scholar 

  • Xu N, Zhang HH, Gu SY, Li X, Zhu YW, Yang Y, Liu L, Zhang XL (2017) Effects of increased NO3 –N application on PSII functionin leaves of Morus alba seedlings under Na2CO3 stress. Prata Cultural Sci 34(1):67–74

    Google Scholar 

  • Yamori W, Noguchi KO, Hikosaka K, Terashima I (2010) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol 152:388–399

    Article  CAS  Google Scholar 

  • Yan SH, Ji J, Wang G (2006) Effects of salt stress on plants and the mechanism of salt tolerance. World Sci Technol Res Dev 28(4):70–76

    Google Scholar 

  • Yang Y, Ma M, Zheng QS, Liu ZJ, Guo SW (2012) Response of canola seedlings to salt stress under different nitrogen forms. Plant Nutr Fertil Sci 18(5):1220–1227

    CAS  Google Scholar 

  • Yuan JF, Tian CY, Feng G, Ma HY (2009) Effects of nitrate on the root growth and salt tolerance of Suaeda physophora seedlings under NaCl stress. Plant Nutr Fertil Sci 15(4):953–959

    CAS  Google Scholar 

  • Zhang HH, Zhong HX, Wang JF, Sui X, Xu N, Gu SY (2016) Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. Peer J 4(3):e2125

    Article  Google Scholar 

  • Zhang HH, Xu N, Li X, GU SY (2017) Overexpression of 2-Cys Prx increased salt tolerance of photosystem II (PSII) in tobacco. Int J Agric Biol 19(4):735–745

    Article  CAS  Google Scholar 

  • Zhao N, Wang SJ, Ma XJ, Zhu HP, Sa G, Sun J, Li NF, Zhao CJ, Zhao R, Chen SL (2016) Extracellular ATP mediates cellular K+/Na+, homeostasis in two contrasting poplar species under NaCl stress. Trees 30(3):825–837

    Article  CAS  Google Scholar 

  • Zhou YH, Lam HM, Zhang JH (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 5(58):1207–1217

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Heilongjiang Academy of Agricultural Sciences for providing the seeds for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixiu Zhong or Yining Wu.

Additional information

Project Funding: The work was supported by the Fundamental Research Funds for the Central Universities (2572018BE05) and the National Natural Science Foundation of China (31500323; 31370426).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, H., Liu, Y. et al. Increase of nitrogen to promote growth of poplar seedlings and enhance photosynthesis under NaCl stress. J. For. Res. 30, 1209–1219 (2019). https://doi.org/10.1007/s11676-018-0775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0775-6

Keywords

Navigation