Skip to main content
Log in

Using nonparametric modeling approaches and remote sensing imagery to estimate ecological welfare forest biomass

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The spatial distribution of forest biomass is closely related with carbon cycle, climate change, forest productivity, and biodiversity. Efficient quantification of biomass provides important information about forest quality and health. With the rising awareness of sustainable development, the ecological benefits of forest biomass attract more attention compared to traditional wood supply function. In this study, two nonparametric modeling approaches, random forest (RF) and support vector machine were adopted to estimate above ground biomass (AGB) using widely used Landsat imagery in the region, especially within the ecological forest of Fuyang District in Zhejiang Province, China. Correlation analysis was accomplished and model parameters were optimized during the modeling process. As a result, the best performance modeling method RF was implemented to produce an AGB estimation map. The predicted map of AGB in the study area showed obvious spatial variability and demonstrated that within the current ecological forest zone, as well as the protected areas, the average of AGB were higher than the ordinary forest. The quantification of AGB was proven to have a close relationship with the local forest policy and management pattern, which indicated that combining remote-sensing imagery and forest biophysical property would provide considerable guidance for making beneficial decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avitabile V, Baccini A, Friedl MA, Schmullius C (2012) Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens Environ 117:366–380

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indexes for lai and apar assessment. Remote Sens Environ 35(2–3):161–173

    Article  Google Scholar 

  • Berner LT, Alexander HD, Loranty MM, Ganzlin P, Mack MC, Davydov SP, Goetz SJ (2015) Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. For Ecol Manag 337:110–118

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data—the TM tasseled cap. IEEE Trans Geosci Remote Sens 22(3):256–263

    Article  Google Scholar 

  • Du HQ, Cui RR, Zhou GM, Shi YJ, Xu XJ, Fan WL, Lü YL (2010) The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecol Sin 30(5):257–263

    Article  Google Scholar 

  • Du HQ, Zhou GM, Ge HL, Fan WY, Xu XJ, Fan WL, Shi YJ (2012) Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique. Int J Remote Sens 33(6):1917–1933

    Article  Google Scholar 

  • Du L, Zhou T, Zou ZH, Zhao X, Huang KC, Wu H (2014) Mapping forest biomass using remote sensing and national forest inventory in China. Forests 5(6):1267–1283

    Article  Google Scholar 

  • Duane MV, Cohen WB, Campbell JL, Hudiburg T, Turner DP, Weyermann DL (2010) Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests. For Sci 56(4):405–416

    Google Scholar 

  • Dube T, Mutanga O (2015) Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J Photogramm Remote Sens 101:36–46

    Article  Google Scholar 

  • Eckert S (2012) Improved forest biomass and carbon estimations using texture measures from worldview-2 satellite data. Remote Sens 4(12):810–829

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85(4):463–474

    Article  Google Scholar 

  • Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Gao J, Liu YS (2012) Deforestation in Heilongjiang Province of China, 1896–2000: severity, spatiotemporal patterns and causes. Appl Geogr 35(1–2):345–352

    Article  Google Scholar 

  • Guo Y, Li ZY, Zhang X, Chen EX, Bai LN, Tian X, He QS, Feng Q, Li WM (2012) Optimal support vector machines for forest above-ground biomass estimation from multisource remote sensing data. In: Geoscience and remote sensing symposium (IGARSS), 2012 IEEE International, pp 6388–6391

  • Hame T, Salli A, Andersson K, Lohi A (1997) A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data. Int J Remote Sens 18(15):3211–3243

    Article  Google Scholar 

  • Han N, Du HQ, Zhou GM, Xu XJ, Cui RR, Gu CY (2013) Spatiotemporal heterogeneity of Moso bamboo aboveground carbon storage with Landsat Thematic Mapper images: a case study from Anji County, China. Int J Remote Sens 34(14):4917–4932

    Article  Google Scholar 

  • Hirata Y, Tabuchi R, Patanaponpaiboon P, Poungparn S, Yoneda R, Fujioka Y (2014) Estimation of aboveground biomass in mangrove forests using high-resolution satellite data. J For Res 19(1):34–41

    Article  Google Scholar 

  • Ji L, Wylie BK, Nossov DR, Peterson B, Waldrop MP, Mcfarland JW, Rover J, Hollingsworth TN (2012) Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int J Appl Earth Obs Geoinf 18:451–461

    Article  Google Scholar 

  • Kelsey K, Neff J (2014) Estimates of aboveground biomass from texture analysis of Landsat imagery. Remote Sens 6(7):6407–6422

    Article  Google Scholar 

  • Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens 65(6):581–590

    Article  Google Scholar 

  • Labrecque S, Fournier RA, Luther JE, Piercey D (2006) A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For Ecol Manag 226(1–3):129–144

    Article  Google Scholar 

  • Latifi H, Fassnacht FE, Hartig F, Berger C, Hernández J, Corvalán P, Koch B (2015) Stratified aboveground forest biomass estimation by remote sensing data. Int J Appl Earth Obs Geoinf 38:229–241

    Article  Google Scholar 

  • Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120(2–3):65–73

    Article  Google Scholar 

  • Li WH (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manag 201(1):33–41

    Article  Google Scholar 

  • Liao YH, Chen HY, Zheng W, Chen CG, Liu LW (2008) Study on community of Fengshui woods and the value of application in the construction of ecological public welfare forest. J Subtrop Resour Environ 3(2):42–48

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27(1):88–106

    Article  Google Scholar 

  • Liu QX, Chang J, Jiang B, Yuan WG, Qi L, Zhu JZ, Ge Y (2005) The biomass of the evergreen broad-leaved ecological public-welfare forests in Zhejiang, East China. Acta Ecol Sin 25(9):2139–2144

    Google Scholar 

  • Lu DS (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26(12):2509–2525

    Article  Google Scholar 

  • Lu DS (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328

    Article  Google Scholar 

  • Lu DS, Chen Q, Wang GX, Liu LJ, Li GY, Moran E (2014) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digit Earth 9(1):63–105

    Article  Google Scholar 

  • Main-Knorn M, Moisen GG, Healey SP, Keeton WS, Freeman EA, Hostert P (2011) Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians. Remote Sens 3(12):1427–1446

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  • Mutanga O, Adam E, Cho MA (2012) High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int J Appl Earth Obs Geoinf 18:399–406

    Article  Google Scholar 

  • Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257(2):427–434

    Article  Google Scholar 

  • Ohmann JL, Gregory MJ, Roberts HM (2014) Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sens Environ 151:3–15

    Article  Google Scholar 

  • Pflugmacher D, Cohen WB, Kennedy RE (2012) Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens Environ 122:146–165

    Article  Google Scholar 

  • Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114(5):1053–1068

    Article  Google Scholar 

  • Qi XK, Wang KL, Zhang CH (2013) Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecol Eng 54:245–253

    Article  Google Scholar 

  • Roy PS, Ravan SA (1996) Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. J Biosci 21(4):535–561

    Article  Google Scholar 

  • Roy DP, Wulder MA, Loveland TR, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Article  Google Scholar 

  • Stow D, Niphadkar M, Kaiser J (2005) MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int J Remote Sens 26(17):3867–3873

    Article  Google Scholar 

  • Tang LN, Shao GF, Dai LM (2009) Roles of digital technology in China’s sustainable forestry development. Int J Sust Dev World Ecol 16(2):94–101

    Article  Google Scholar 

  • Teillet PM, Guindon B, Goodenough DG (1982) On the slope-aspect correction of multispectral scanner data. Can J Remote Sens 8(2):84–106

    Article  Google Scholar 

  • Tian X, Li ZY, Su ZB, Chen EX, van der Tol C, Li X, Guo Y, Li LH, Ling FL (2014) Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data. Int J Remote Sens 35(21):7339–7362

    Article  Google Scholar 

  • Vaglio Laurin G, Chen Q, Lindsell JA, Coomes DA, Frate FD, Guerriero L, Pirotti F, Valentini R (2014) Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J Photogramm Remote Sens 89(26):49–58

    Article  Google Scholar 

  • Wang XK, Feng ZW, Ouyang ZY (2001) The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. For Ecol Manag 148(1–3):117–123

    Article  Google Scholar 

  • Wang XC, Shao GF, Chen H, Lewis BJ, Qi G, Yu DP, Zhou L, Dai LM (2013) An Application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in Northeastern China. Environ Manag 52(3):612–620

    Article  Google Scholar 

  • Xie YC, Sha ZY, Yu M, Bai YF, Zhang L (2009) A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol Model 220(15):1810–1818

    Article  CAS  Google Scholar 

  • Yang J, Yuan WG, Jiang B, Zhu JR, Wen LN (2007) Effect of environment on biomass of major ecological forest in Zhejiang. J Zhejiang For Sci Technol 27(02):20–23

    Google Scholar 

  • Yin RS, Yin GP (2010) China’s primary programs of terrestrial ecosystem restoration: initiation, implementation, and challenges. Environ Manag 45(3):429–441

    Article  Google Scholar 

  • Yu DY, Shi PJ, Han GY, Zhu WQ, Du SQ, Xun B (2011) Forest ecosystem restoration due to a national conservation plan in China. Ecol Eng 37(9):1387–1397

    Article  Google Scholar 

  • Yuan WG, Jiang B, Ge YJ, Zhu JR, Shen AH (2009) Study on biomass model of key ecological forest in Zhejiang Province. J Zhejiang For Sci Technol 29(2):1–5

    Google Scholar 

  • Yuan JG, Niu Z (2008) Evaluation of atmospheric correction using FLAASH. In: 2008 International workshop on earth observation and remote sensing applications, EORSA, pp 1–6

  • Zhang F, Du Q, Ge HL, Liu AX, Fu WJ, Ji BY (2012) Spatial distribution of forest carbon in Zhejiang Province with geostatistics based on CFI sample plots. Acta Ecol Sin 32(16):5275–5286

    Article  Google Scholar 

  • Zhang J, Ge Y, Chang J, Jiang B, Jiang H, Peng CH, Zhu JR, Yuan WG, Qi LZ, Yu SQ (2007) Carbon storage by ecological service forests in Zhejiang Province, subtropical China. For Ecol Manag 245(1–3):64–75

    Article  Google Scholar 

  • Zhang J, Huang S, Hogg EH, Lieffers V, Qin Y, He F (2014) Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences 11(9):2793–2808

    Article  Google Scholar 

  • Zhang XY, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophys Res Lett 33(9):370–386

    Article  CAS  Google Scholar 

  • Zheng DL, Rademacher J, Chen JQ, Crow T, Bresee M, Le Moine J, Ryu SR (2004) Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93(3):402–411

    Article  Google Scholar 

  • Zhu XL, Liu DS (2015) Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J Photogramm Remote Sens 102:222–231

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the USGS and NASA for the open archives of Landsat imagery, and would like to give sincere thanks to the R Development Team for the open-source package for statistical analysis. The authors also thank the Editor and anonymous reviewers for their constructive comments, suggestions, and help in enhancing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Additional information

Project funding: The authors are grateful for the support of Chinese Ministry of Environmental Protection (No. STSN-05-11), Ministry of Science and Technology of the People’s Republic of China (No. 2015BAC02B00) and Science Technology Department of Zhejiang Province (No. 2015F50056).

The online version is available at http://www.springerlink.com.

Corresponding editor: Hu Yanbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Tao, H., Zhai, M. et al. Using nonparametric modeling approaches and remote sensing imagery to estimate ecological welfare forest biomass. J. For. Res. 29, 151–161 (2018). https://doi.org/10.1007/s11676-017-0404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0404-9

Keywords

Navigation