Skip to main content
Log in

Phylogenetic relationships among five species of Armeniaca Scop. (Rosaceae) using microsatellites (SSRs) and capillary electrophoresis

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The genus Armeniaca Scop. is well known for its popular cultivated edible fruit trees such as Armeniaca vulgaris Lam. and ornamental flowers such as A. mume Sieb. Another species, A. cathayana Fu et al., one of six important dry fruits (kernel-using apricot), is cultivated for its edible seeds in North China. In the present study, DNA from 70 individuals of Armeniaca, including 38 of A. cathayana, 18 of A. vulgaris, 12 of A. sibirica, 1 of A. dasycarpa and 1 of A. mume, was extracted and analyzed using microsatellites and capillary electrophoresis. For 20 polymorphic loci selected, 339 alleles and 140.7 effective alleles were detected. The number of alleles per locus ranged from 8 to 28, with an average of 16.95 alleles per locus. The observed heterozygosity (Ho) and the expected heterozygosity (He) ranged from 0.427 to 0.971 and from 0.737 to 0.912, respectively. The polymorphism information content varied from 0.708 to 0.905, with an average of 0.827. Based on the genetic similarity among 70 individuals, a UPGMA was used to establish the phylogenetic relationships. The taxonomic positions among five species were clearly revealed, and A. cathayana was more closely related to A. vulgaris than to A. sibirica. The results will provide a scientific basis for research on the taxonomy, germplasm resources and breeding of Armeniaca, especially for A. cathayana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bekele E, Shigeta M (2011) Phylogenetic relationships between Ensete and Musa species as revealed by the trnT trnF region of cpDNA. Genet Res Crop Evol 58(2):259–269

    Article  CAS  Google Scholar 

  • Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44:250–266

    Article  CAS  PubMed  Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastidic trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    Article  CAS  PubMed  Google Scholar 

  • Calonje M, Martín-Bravo S, Dobeš C, Gong W, Jordon-Thaden I, Kiefer C, Kiefer M, Paule J, Schmickl R, Koch MA (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Syst Evol 282:257–280

    Article  CAS  Google Scholar 

  • Castro P, Gil J, Cabrera A, Moreno R (2013) Assessment of genetic diversity and phylogenetic relationships in Asparagus species related to Asparagus officinalis. Genet Resour Crop Evol 60(4):1275–1288

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch Bull 19:11–15

    Google Scholar 

  • Fu DL, Li BR, Fu JM, Li JH, Yang SB, Zhou DS, Liu MP (2010) A new species of Armeniaca scop. from China. Bull Bot Res 30(1):1–3 (In Chinese)

    CAS  Google Scholar 

  • Fu DL, Liu MP, Fu JM, Tian M, Ma LY, He F, Liang C, Wei SZ (2011) Analysis of the taxonomical position of species Armeniaca cathayana using SSR molecular markers. J Cent South Univ For Technol 31(3):60–64 (In Chinese)

    Google Scholar 

  • Han BM, Zhao MZ, Wang J, Yu HM (2012) Phylogenetic relationships among Fragaria germplasm by SSR markers. Act Hortic Sin 39(12):2352–2360 (In Chinese)

    CAS  Google Scholar 

  • He TM (2006) The genetic diversity of germplasm of Prunus armeniaca and the origin of P. dasycarpa. [D] Shandong: Shandong Agricultural University 8–27 (In Chinese)

  • Koch MA, Dobes C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20:338–350

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Pan YB, Li YR, Fang FX (2010) Assessment of genetic diversity in Saccharum using SSR markers and capillary electrophoresis. Guihaia 30(1):106–111 (In Chinese)

    CAS  Google Scholar 

  • Liu X, Zhang L, Li G, Qin R, Liu H (2014) Application of nrDNA-ITS sequences in plant phylogeny and evolution. Bot Res 3:32–40 (In Chinese)

    Google Scholar 

  • Lu LD, Gu CZ, Li CL (2003) Rosaceae. In: Wu ZY, Raven PH (eds) Flora of China 9:46–434. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis

  • Lü YM, Lü ZR, Gao SZ (1994) A study on the evolution relationship and classification of apricot via peroxidase isozyme zymograms analysis. Act Agric Bor-Sin 9(4):69–74 (In Chinese)

    Google Scholar 

  • Qi JX, Hao YB, Zhu Y, Wu CL, Wang WX, Leng P (2011) Studies on germplasm of Juglans by EST-SSR markers. Act Hortic Sin 38(3):441–448 (In Chinese)

    CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Tang RH, He LQ, Zhuang WJ, Hang ZQ, Zhong RC, Gao GQ, Li Z (2007) Phylogenetic relationships in the genus Arachis based on SSR molecular marker profile. Chin J Oil Crop Sci 29(2):142–147 (In Chinese)

    CAS  Google Scholar 

  • Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  CAS  PubMed  Google Scholar 

  • UPOV/INF/17/1 (2010) Guideline for DNA-profiling: molecular marker selection and database construction (BMT Guideline). Geneva

  • Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangements, expression. Syst Biodivers 5:261–276

    Article  Google Scholar 

  • Wang YZ, Sun HY, Yang L, Zhang KC, Lin K (2006) Study on the phylogenetic relationship among genus Armeniaca based on RAPD markers. Chin Agric Sci Bull 22(5):53–56 (In Chinese)

    Google Scholar 

  • Wissemann V (2000) Molekulargenetische und morphologisch-anatomische Untersuchungen zur evolution und Genomzusammensetzung von Wildrosen der Sektion Caninae (DC.). Ser Bot Jahrb Syst 122:347–429

    Google Scholar 

  • Wu YX, Daud MK, Chen L, Zhu SJ (2007) Phylogenetic diversity and relationship among Gossypium germplasm using SSRs markers. Plant Syst Evol 268:199–208

    Article  Google Scholar 

  • Yü TT, Lu LT, Ku TC, Chen SX (1986) Rosaceae. In: Yü TT (ed) Flora Reipublicae Popularis Sinicae 38:24–33 Science Press, Beijing (In Chinese)

  • Zhan QW, Zhang TZ, Wang BH, Li JQ (2008) Diversity comparison and phylogenetic relationships of S. bicolor and S. sudanense as revealed by SSR markers. Plant Sci 174(1):9–16

    Article  CAS  Google Scholar 

  • Zhang JY, Wu XZ (2009) A new species of the genus Armeniaca (Rosaceae). Bull Bot Res 29(1):1–2 (In Chinese)

    Google Scholar 

  • Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P (2006) Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113(3):407–418

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wang F, Shen W, Jiang D, Hong Q, Zhao X (2015) Genetic diversity of Poncirus and phylogenetic relationships with its relatives revealed by SSR and SNP/InDel markers. Acta Physiol Plant 37:141

    Article  Google Scholar 

  • Zhuge Q, Ding YL, Xu Ch, Zou HY, Huang MR, Wang MX (2005) A preliminary analysis of phylogenetic relationships of Arundinaria and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-F intergenic spacer). J For Res 16(1):5–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Genotyping was done by Beijing Boyoushun Biotechnology Limited Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Fu or Lüyi Ma.

Additional information

Project funding: This work was financially supported by 948 Project (No.2011-4-37) and Standardization Project (No.2013-LY-082) of The State Forestry Administration of China.

The online version is available at http://www.springerlink.com

Corresponding editor: Hu Yanbo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Ma, L., Qin, Y. et al. Phylogenetic relationships among five species of Armeniaca Scop. (Rosaceae) using microsatellites (SSRs) and capillary electrophoresis. J. For. Res. 27, 1077–1083 (2016). https://doi.org/10.1007/s11676-016-0245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0245-y

Keywords

Navigation