Skip to main content
Log in

Interdiffusion and Atomic Mobilities in fcc Ni-Ti-Mo Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Experimental diffusion data in fcc Ni-Ti-Mo alloys at 1373 and 1473K was measured by electronic-probe microanalysis and the interdiffusion coefficients have been determined using Whittle-Green method. The atomic mobilities of Ni, Ti and Mo in Ni-Ti-Mo alloys have been obtained through critically assessing the interdiffusion data with the DICTRA software. Comprehensive comparisons between calculated and experimental diffusion coefficients showed that the atomic mobilities obtained in this work could well reproduce the experimental data. And the validity of the diffusion mobilities was tested by simulating the concentration-distance profiles and diffusion paths in diffusion couples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, and M. Yuyama, Phenomenological and Microstructural Analysis of Intermediate Temperatures creep in a Ni–Fe-Based Alloy for Advanced Ultra-Supercritical Fossil Power Plants, Acta Mater., 2016, 102, p 70–78.

    Article  ADS  Google Scholar 

  2. C.E. Campbell, Assessment of the Diffusion Mobilites in the γ′ and B2 Phases in the Ni–Al–Cr System, Acta Mater., 2008, 56(16), p 4277–4290.

    Article  ADS  Google Scholar 

  3. Y.H.H.H.Y. TANXUDU, Isothermal Section at 927°C of Cr-Ni-Ti System, Trans. Nonferrous Met. Soc. China., 2007, 17(4), p 711–714.

    Article  Google Scholar 

  4. J.A. van Beek, A.A. Kodentsov, and F.J.J. van Loo, Phase Equilibria in the Ni-Cr-Ti System at 850°C, Alloys Compd., 1998, 270(1–2), p 218–223.

    Article  Google Scholar 

  5. J.P. Collier, P.W. Keefe, and J.K. Tien, The Effects Of Replacing The Refractory Elements W, Nb, and Ta with Mo in Nickel-Base Superalloys On Microstructural, Microchemistry, and Mechanical Properties, Metall. Trans. A, 1986, 17(4), p 651–661.

    Article  Google Scholar 

  6. X.J. Liu, H.H. Hu, J.J. Han, Y. Lu, and C.P. Wang, Assessment of the Diffusional Mobilities in fcc Ni–Nb and fcc Ni–Mo Alloys, Calphad, 2012, 38(38), p 140–145.

    Article  Google Scholar 

  7. J.O. Andersson, and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350–1355.

    Article  ADS  Google Scholar 

  8. J.O. Andersson, L. Höglund, B. Jönsson, and J. Ågren, Computer Simulation of Multicomponent Diffusional Transformations in Steel, Fundam. Appl. Ternary Diffus., 1990, 14, p 153–163.

    Article  Google Scholar 

  9. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals., Academic Press, 1970.

  10. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153–190.

    Article  Google Scholar 

  11. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, DICTRA, A Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib. Diffus., 2000, 21(3), p 269.

    Article  Google Scholar 

  12. M.S.A. Karunaratne, and R.C. Reed, Interdiffusion of Niobium and Molybdenum in Nickel between 900–1300 °C, Defect Diff. Forum., 2005, 237, p 420–425.

    Article  Google Scholar 

  13. V.D. Divya, S.S.K. Balam, U. Ramamurty, and A. Paul, Interdiffusion in the Ni–Mo System, Scr. Mater., 2010, 62(8), p 621–624.

    Article  Google Scholar 

  14. N. Komai, M. Watanabe, Z. Horita, T. Sano, and M. Nemoto, Analytical Electron Microscopy Study of Ni/Ni–8mol%Ti Diffusion Couples, Acta Mater., 1998, 46(12), p 4443–4451.

    Article  ADS  Google Scholar 

  15. S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, and S. Saji, Interdiffusion and its Size Effect in Nickel Solid Solutions of Ni-Co, Ni-Cr and Ni-Ti Systems, J. Mater. Sci. Lett., 1992, 11(20), p 1333–1337.

    Article  Google Scholar 

  16. M. Liu, L. Zhang, W. Chen, J. Xin, Y. Du, and H. Xu, Diffusivities and Atomic Mobilities in fcc_A1 Ni–X (X=Ge, Ti and V) Alloys, Calphad, 2013, 41, p 108–118.

    Article  Google Scholar 

  17. K. Santhy, and K.C.H. Kumar, Thermodynamic Assessment of Mo-Ni-Ti Ternary System by Coupling first-Principle Calculations with CALPHAD Approach, Intermetallics, 2010, 18(9), p 1713–1721.

    Article  Google Scholar 

  18. J. Kirkaldy, Diffusion in Multicomponent Metallic Systems, Can. J. Phys., 2011, 35(4), p 435–440.

    Article  ADS  Google Scholar 

  19. D. Whittle, and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Metall., 1974, 8(7), p 883–884.

    Article  Google Scholar 

  20. J. Ågren, Numerical Treatment of Diffusional Reactions in Multicomponent Alloys, J. Phys. Chem. Solids, 1982, 43(4), p 385–391.

    Article  ADS  Google Scholar 

  21. J. Ågren, Diffusion in Phases with Several Components and Sublattices, J. Phys. Chem. Solids, 1982, 43(5), p 421–430.

    Article  ADS  Google Scholar 

  22. J.J. Hyot, The Continuum Theory of Nucleation in Multicomponent Systems, Acta Metall. Mater., 1990, 38(8), p 1405–1412.

    Article  Google Scholar 

  23. B. Jönsson, Ferromagetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85(7), p 498–501.

    Google Scholar 

  24. O. Redlich, and A. Kister, Algebraic Representation of Thermodynamic Properties and Classification of Solution, Ind. Eng. Chem., 1948, 40, p 345–348.

    Article  Google Scholar 

  25. M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phases, Calphad, 1980, 4(1), p 1–12.

    Article  Google Scholar 

  26. L. Zhang, Y. Du, Q. Chen, I. Steinbach, and B. Huang, Atomic Mobilities and Diffusivities in the fcc, L12 and B2 Phases of the Ni-Al System, Int. J. Mater. Res., 2010, 101(12), p 1461–1475.

    Article  Google Scholar 

  27. J. Kirkaldy, D. Weichert, and Z.U. Haq, Diffusion in Multicomponent Metallic Systems: VI. Some Thermodynamic Properties of D Matrix and the Corresponding Solutions of the Diffusion Equations, Can. J. Phys., 2011, 41(12), p 2166–2173.

    Article  ADS  Google Scholar 

  28. J.S. Kirkaldy, and L.C. Brown, Diffusion Behavior in Ternary, Multiphase Systems, Can. Metall. Quart., 1963, 2, p 89–115.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030006), National Key R&D Program of China (Grant No. 2017YFB0702901), National Natural Science Foundation of China (Grant No. 51831007), and Natural Science Foundation of Fujian Province of China (2019J01033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Lu or X. J. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.P., Zhang, W.H., Yu, X. et al. Interdiffusion and Atomic Mobilities in fcc Ni-Ti-Mo Alloys. J. Phase Equilib. Diffus. 43, 345–354 (2022). https://doi.org/10.1007/s11669-022-00962-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00962-9

Keywords

Navigation