Skip to main content
Log in

Calorimetric Investigation of the Mixing Enthalpy of Liquid Hf-Ni-Ti Alloys and Thermodynamic Properties and Chemical Ordering in Quaternary Liquid Cu-Hf-Ni-Ti Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The mixing enthalpies of liquid Hf-Ni-Ti alloys were measured at 1873 K by applying a high-temperature isoperibolic calorimeter. The investigation was performed along the xHf/xNi = 3 section at xTi = 0-0.64 and along the xNi/xTi = 3 section at xHf = 0-0.57. The limiting partial enthalpy of mixing of undercooled liquid titanium in liquid Hf-Ni alloy is (− 92 ± 15) kJ mol−1. The partial enthalpy of mixing of undercooled liquid hafnium at infinite dilution is (− 163 ± 12) kJ mol−1. The integral mixing enthalpies are negative nearly in the entire composition range. The thermodynamic properties of liquid quaternary alloys are modelled using the associate solution model. The amorphization ranges in ternary and quaternary systems are predicted by considering a total molar fraction of associates in liquid alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys, Entropy, 2013, 15(12), p 3810-3821

    ADS  MathSciNet  Google Scholar 

  2. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Alloy Designs of High-Entropy Crystalline and Bulk Glassy Alloys by Evaluating Mixing Enthalpy and Delta Parameter for Quinary to Decimal Equi-Atomic Alloys, Mater. Trans., 2014, 55(1), p 165-170

    Google Scholar 

  3. Y. Yokoyama, S. Itoh, Y. Murakami, I. Narita, G. Wang, and P.K. Liaw, Microsegregation in and Phase Stability of As-Cast Ti-Zr-Hf-Ni-Pd-Pt High-Entropy Alloys, Metal. Mater. Trans. A, 2015, 46(4), p 1474-1480

    Google Scholar 

  4. W.H. Wang, High-Entropy Metallic Glasses, JOM, 2014, 66(10), p 2067-2077

    Google Scholar 

  5. F. Sommer, J.J. Lee, and B. Predel, Calorimetric Investigations of Liquid Alkaline Earth Metal Alloys, Ber. Bunsengesell. Phys. Chemie, 1983, 87(9), p 792-797

    Google Scholar 

  6. M.A. Turchanin and P.G. Agraval, Thermodynamic Assessment of the Copper-Hafnium System, Powder Metal. Metal Ceram., 2008, 47(3–4), p 223-233

    Google Scholar 

  7. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, Phase Equilibria and Thermodynamics of Binary Copper Systems with 3d-metals. VI. Copper-Nickel System, Powder Metall. Metal Ceram., 2007, 46(9–10), p 467-477

    Google Scholar 

  8. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, Thermodynamic Assessment of the Cu-Ti-Zr System. I. Cu-Ti System, Powder Metall. Metal Ceram., 2008, 47(5–6), p 344-360

    Google Scholar 

  9. M.A. Turchanin and P.G. Agraval, Calculation of Metastable Phase Equilibria with Participation of Supercooled Liquid and Assessment of Glass Formation Composition Range in the (Co, Ni, Cu)–IVA-metal Melts, Physical Chemistry of Condensed Systems and Interfaces (Collected Scientific Papers) (Kyiv Universytet, Kyiv), 2003, p 134-141

  10. H. Bittermann and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Ternary System Boron-Hafnium-Titanium (B-Hf-Ti), J. Phase Equilib., 1997, 18(1), p 24-47

    Google Scholar 

  11. P.G. Agraval, A.R. Abdulov, L.A. Dreval, and M.A. Turchanin, Thermodynamic Modeling of Stable and Metastable Transformations in the Ni–Ti System, Vestnik DGMA, 2011, 25(4), p 6-13

    Google Scholar 

  12. D.G. Pettifor, The Structures of Binary Compounds. I. Phenomenological Structure Maps, J. Phys. C Solid State Phys., 1986, 19(3), p 285-313

    ADS  Google Scholar 

  13. O.J. Kleppa and S. Watanabe, Thermochemistry of Alloys of Transition Metals: Part III. Copper-Silver, -Titanium, Zirconium, and -Hafnium at 1373 K, Metal. Trans. B, 1982, 13(3), p 391-401

    Google Scholar 

  14. V.V. Berezutskii, N.I. Usenko, and M.I. Ivanov, Enthalpies of Mixing in Liquid Alloys of Copper with Hafnium, Powder Metall. Metal Ceram., 2001, 40(7/8), p 383-385

    Google Scholar 

  15. M.A. Turchanin, Calorimetric Research on the Heat of Formation of Liquid Alloys of Copper with Group IIIA and Group IVA Metals, Powder Metall. Metal Ceram., 1997, 36(5–6), p 253-263

    Google Scholar 

  16. V.V. Berezutski and M.I. Ivanov, Thermodynamics of Binary Liquid Cu–Hf Alloys, J. Alloys Compd., 2000, 306(1–2), p L1-L2

    Google Scholar 

  17. Y. Tozaki, Y. Iguchi, S. Ban-ya, and T. Fuwa, Heat of Mixing of Iron Alloys, in Proceedings of the international symposium on metallurgical chemistryapplications in ferrous metallurgy, 1971, p 130-132

  18. U.K. Stolz, I. Arpshofen, F. Sommer, and B. Predel, Determination of the Enthalpy of Mixing of Liquid Alloys Using a High-Temperature Mixing Calorimeter, J. Phase Equilib., 1993, 14(4), p 90

    Google Scholar 

  19. Y. Iguchi, Y. Tozaki, M. Kakizaki, S. Ban-ya, and T. Fuwa, Calorimetric Examination of Mixing Heats of Nickel and Cobalt Alloys, J. Iron Steel Inst. Jpn., 1977, 63, p 953-961

    Google Scholar 

  20. B. Predel and R. Mohs, Thermodynamic investigation of liquid Cu–Ni alloys, Arch. Eisenhuettenwes., 1971, 42(8), p 575-579, in German

    Google Scholar 

  21. I.V. Nikolaenko and M.A. Turchanin, Enthalpies of Formation of Liquid Binary (Copper + Iron, Cobalt, and Nickel) Alloys, Metall. Mater. Trans. B, 1997, 28(6), p 1119-1130

    Google Scholar 

  22. A.D. Kulkarni and R.E. Johnson, Thermodynamic Studies of Liquid Copper Alloys by Electromotive Force Method: Part II. The Cu-Ni-O and Cu-Ni Systems, Metal. Trans., 1973, 4(7), p 1723-1727

    Google Scholar 

  23. V.V. Berezutskii and G.M. Lukashenko, Thermodynamic Properties of Liquid Nickel-Copper Alloys, Ukr. Khim. Zh., 1987, 10, p 1029-1032

    Google Scholar 

  24. J. Tomiska and A. Neckel, Knudsen Cell—Mass Spectrometry for the Determination of the Thermodynamic Properties of Liquid Copper–Nickel Alloys, Int. J. Mass Spectr. Ion Phys., 1983, 47, p 223-226

    ADS  Google Scholar 

  25. C.W. Schultz, G.R. Zellars, S.L. Payne, and E.F. Foerster, Activities of Copper and Nickel in Liquid Copper-Nickel Alloys, Bur. Mines Rep. Invest., 1964, 6410, p 9

    Google Scholar 

  26. M.A. Turchanin, P.G. Agraval, A.N. Fesenko, and A.R. Abdulov, Thermodynamics of Liquid Alloys and Metastable Phase Transformations in the Copper-Titanium System, Powder Metal. Metal Ceram., 2005, 44(5–6), p 259-270

    Google Scholar 

  27. F. Sommer, K.H. Klappert, I. Arpshofen, and B. Predel, Thermodynamic Investigations of Liquid Copper-Titanium Alloys, Z. Metallkd., 1982, 73(9), p 581-584

    Google Scholar 

  28. N. Selhaoui, J.-C. Gachon, and J. Hertz, Enthalpies of formation of Some Solid Hafnium Nickel Compounds and of the Ni-Rich HfNi Liquid by Direct Reaction Calorimetry, Metal. Trans. B, 1992, 23(6), p 815-819

    Google Scholar 

  29. V.V. Sudavtsova, N.V. Podoprigora, and M.A. Shevchenko, Thermodynamic Properties of Ni–Hf Melts, Powder Metal. Metal Ceram., 2010, 49(7–8), p 478-483

    Google Scholar 

  30. M.A. Turchanin, I.V. Belokonenko, P.G. Agraval, and A.A. Turchanin, Enthalpies of Formation of Liquid Binary Ni-(Ti, Zr, and Hf) Alloys, in The International IUPAC Conference on High Temperature Materials Chemistry, 2000, p 10-14

  31. L. Bencze and K. Hilpert, Thermochemistry of the Ni-Hf System—Intermetallic Phases, Metal. Mater. Trans. A, 1996, 27(11), p 3576-3590

    Google Scholar 

  32. R. Lück, I. Arpshofen, B. Predel, and J.F. Smith, Calorimetric Determination of the Enthalpies of Formation of Liquid Ni-Ti Alloys, Thermochim. Acta, 1988, 131, p 171-181

    Google Scholar 

  33. U. Thiedemann, M. Rösner-Kuhn, K. Drewes, G. Kuppermann, and M.G. Frohberg, Temperature Dependence of The Mixing Enthalpy of Liquid Ti–Ni and Fe–Ti–Ni Alloys, J. Non-Cryst. Solids, 1999, 250–252, p 329-335

    ADS  Google Scholar 

  34. R.M. German and G.R.S. Pierre, The High Temperature Thermodynamic Properties of Ni-Ti Alloys, Metal. Mater. Trans. B, 1972, 3(11), p 2819-2823

    ADS  Google Scholar 

  35. P.G. Agraval, M.A. Turchanin, A.A. Vodopyanova, and L.A. Dreval, Mixing Enthalpies of Liquid Cu–Hf–Ti Alloys Studied by High-Temperature Calorimetry, Powder Metal. Metal Ceram., 2018, 57(5–6), p 344-348

    Google Scholar 

  36. P. Agraval, M. Turchanin, L. Dreval, and A. Vodopyanova, Mixing Enthalpy of Liquid Cu–Hf–Ni Alloys at 1873 K, J. Therm. Anal. Calorim., 2017, 128(3), p 1753-1763

    Google Scholar 

  37. M.A. Turchanin, A.R. Abdulov, P.G. Agraval, and L.A. Dreval, Enthalpy of Mixing of Liquid Cu-Ni-Ti Alloys at 1873 K, Russ. Metall., 2006, 2006(6), p 500-504

    ADS  Google Scholar 

  38. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth–Gallium–Tin at 723 K. Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys., 1975, 72(1), p 83-88

    Google Scholar 

  39. M.A. Turchanin and I.V. Nikolaenko, Enthalpies of Solution of Vanadium and Chromium in Liquid Copper by High Temperature Calorimetry, J. Alloys Compd., 1996, 235(1), p 128-132

    Google Scholar 

  40. M.A. Turchanin and I.V. Nikolaenko, Enthalpies of Formation of Liquid (Copper + Manganese) Alloys, Metal. Mater. Trans. B, 1997, 28(3), p 473-478

    Google Scholar 

  41. L.A. Dreval, P.G. Agraval, and M.A. Turchanin, Calorimetric Investigation of the Mixing Enthalpy of Liquid Co–Cu–Ti Alloys at 1873 K, Phys. Chem. Liq., 2018, 56(5), p 674-684

    Google Scholar 

  42. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425

    Google Scholar 

  43. A.T. Dinsdale, SGTE Unary Database Version 5.0, https://www.sgte.net/en/free-pure-substance-database

  44. P. Agraval, L. Dreval, M. Turchanin, A. Storchak-Fedyuk, L. Artyukh, and T. Velikanova, Enthalpy of Mixing of Liquid Ni–Ti–Zr Alloys at 1873K, J. Chem. Thermodyn., 2017, 106, p 309-316

    Google Scholar 

  45. U.R. Kattner, The Thermodynamic Modeling of Multicomponent Phase Equilibria, JOM, 1997, 49(12), p 14-19

    ADS  Google Scholar 

  46. Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, and W.A. Oates, Phase Diagram Calculation: Past, Present and Future, Prog. Mater. Sci., 2004, 49(3–4), p 313-345

    Google Scholar 

  47. E. Balanzat and J. Hillairet, Resistometric Detection of Short-Range Ordering in the Metallic Glasses Cu50Ti50 and Ni35Ti65, J. Phys. Colloques, 1982, 12(12), p 2907-2918

    Google Scholar 

  48. L.C. Damonte, L.A. Mendoza-Zélis, G.A.R. López, and E.D. Cabanillas, Thermal Evolution of the Local Order in Amorphous Hf62Ni38, Phys. Rev. B Condens. Matter, 1992, 46(21), p 13767-13772

    ADS  Google Scholar 

  49. N.A. Mauro, A.J. Vogt, M.L. Johnson, J.C. Bendert, R. Soklaski, L. Yang, and K.F. Kelton, Anomalous Structural Evolution and Liquid Fragility Signatures in Cu–Zr and Cu–Hf Liquids and Glasses, Acta Mater., 2013, 61(19), p 7411-7421

    Google Scholar 

  50. D. Raoux, J.F. Sadoc, F. Lagarde, A. Sadoc, and A. Fontaine, Local Structure in a Cu2Ti Amorphous Alloy by EXAFS and X-ray Scattering, J. Phys. Colloques, 1980, 41(C8), p C8-207-C8-210

    Google Scholar 

  51. H. Ruppersberg, D. Lee, and C.N.J. Wagner, Observation of Chemical Short-Range Order in an Amorphous Ni40Ti60 Alloy, J. Phys. Colloques, 1980, 10(8), p 1645-1652

    Google Scholar 

  52. B. Rodmacq, P. Mangin, and A. Chamberod, Neutron-Diffraction Study of Hydrogenated and Deuterated CuTi Amorphous Alloys, J. Phys. F Met. Phys., 1985, 15(11), p 2259-2272

    ADS  Google Scholar 

  53. M. Sakata, N. Cowlam, and H.A. Davies, Neutron Diffraction Measurement of the Structure Factor of a CuTi Metallic Glass, J. Phys. C Solid State Phys., 1979, 9(12), p L235-L240

    Google Scholar 

  54. R. Schmid and Y.A. Chang, A Thermodynamic Study on an Associated Solution Model for Liquid Alloys, Calphad, 1985, 9(4), p 363-382

    Google Scholar 

  55. F. Sommer, Association Model for the Description of the Thermodynamic Functions of Liquid Alloys. I. Basic Concepts, Z. Metallkd., 1982, 73, p 72-76

    Google Scholar 

  56. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190

    Google Scholar 

  57. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273-312

    Google Scholar 

  58. M. Sakata, N. Cowlam, and H.A. Davies, Chemical Short-Range Order in Liquid and Amorphous Cu66Ti34 Alloys, J. Phys. F Metal Phys., 1981, 11(7), p L157-L162

    ADS  Google Scholar 

  59. K.H.J. Buschow, Effect of Short-Range Ordering on the Thermal Stability of Amorphous Ti–Cu Alloys, Scr. Metall., 1983, 17(9), p 1135-1139

    Google Scholar 

  60. J. Reeve, G.P. Gregan, and H. Davies, Glass Forming Ability Studies in the Copper-Titanium System, Rapid. Quench. Metals, 1984, 1, p 203-206

    Google Scholar 

  61. R. Bormann and K. Zöltzer, Determination of the Thermodynamic Functions and Calculation of Phase Diagrams for Metastable Phases, Phys. Status Solidi (a), 1992, 131(2), p 691-705

    ADS  Google Scholar 

  62. K.H.J. Buschow and N.M. Beekmans, Formation, Decomposition, and Electrical Transport Properties of Amorphous Hf-Ni and Hf-Co Alloys, J. Appl. Phys., 1979, 50(10), p 6348-6352

    ADS  Google Scholar 

  63. R. Bormann, Thermodynamics of Undercooled Liquids and its Application to Amorphous Phase Formation, Mater. Sci. Eng. A, 1994, 178(1–2), p 55-60

    Google Scholar 

  64. K.H.J. Buschow, Short-Range Order and Thermal Stability in Amorphous Alloys, Phys. Status Solidi (a), 1984, 14(3), p 593-607

    Google Scholar 

  65. H. Choi-Yim and R.D. Conner, Amorphous Alloys in the Cu–Hf–Ti System, J. Alloys Compd., 2008, 459(1–2), p 160-162

    Google Scholar 

  66. C.-H. Hwang, Y.-J. Ryeom, and K. Cho, Electrical Resistivity and Crystallization of Amorphous Cu-Ti Alloys, J. Less-Common Metals, 1982, 86, p 187-194

    Google Scholar 

  67. C. Colinet, A. Pasturel, and K.H.J. Buschow, Enthalpies of Formation of Ti–Cu Intermetallic and Amorphous Phases, J. Alloys Compd., 1997, 247(1–2), p 15-19

    Google Scholar 

  68. A. Inoue and W. Zhang, Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods, Mater. Trans., 2004, 45(2), p 584-587

    Google Scholar 

  69. K.H.J. Buschow and N.M. Beekmans, Thermal stability of Amorphous Alloys, Solid State Commun., 1980, 35(3), p 233-236

    ADS  Google Scholar 

  70. R. Ristić, E. Babić, D. Pajić, K. Zadro, A. Kuršumović, I.A. Figueroa, H.A. Davies, I. Todd, L.K. Varga, and I. Bakonyi, Properties and Atomic Structure of Amorphous Early Transition Metals, J. Alloys Compd., 2010, 504, p S194-S197

    Google Scholar 

  71. G. Duan, D. Xu, and W.L. Johnson, High Copper Content Bulk Glass Formation in Bimetallic Cu-Hf System, Metal. Mater. Trans. A, 2005, 36(2), p 455-458

    Google Scholar 

  72. J. Basu and S. Ranganathan, Glass-Forming Ability and Stability of Ternary Ni-Early Transition Metal (Ti/Zr/Hf) Alloys, Acta Mater., 2006, 54(14), p 3637-3646

    Google Scholar 

  73. I.A. Figueroa, H.A. Davies, and I. Todd, Formation of Cu–Hf–Ti Bulk Metallic Glasses, J. Alloys Compd., 2007, 434–435, p 164-166

    Google Scholar 

  74. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys in Cu–Zr–Ti and Cu–Hf–Ti Ternary Systems, Acta Mater., 2001, 49(14), p 2645-2652

    Google Scholar 

  75. T. Fukunaga, K. Suzuki, and U. Mizutani, Short Range Structure of (Cu40Ti60)x(Ni40Ti60)1−x(0 ≤ x ≤ 1) Ternary Metallic Glasses Studied by Neutron Diffraction, J. Non-Cryst. Solids, 1992, 150(1–3), p 10-14

    ADS  Google Scholar 

  76. A. Takeuchi and A. Inoue, Calculations of Amorphous-Forming Composition Range for Ternary Alloy Systems and Analyses of Stabilization of Amorphous Phase and Amorphous-Forming Ability, Mater. Trans., 2001, 42(7), p 1435-1444

    Google Scholar 

  77. S.P. Alisova, N.V. Lutskaya, P.V. Budberg, and E.I. Bychkova, Phase Constitution of the TiCu-TiNi-TiCo(TiFe) Systems in the Equilibrium and Metastable States, Russ. Metall., 1993, 3, p 205-212

    Google Scholar 

  78. X.F. Wu, Z.Y. Suo, Y. Si, L.K. Meng, and K.Q. Qiu, Bulk Metallic Glass Formation in a ternary Ti–Cu–Ni Alloy System, J. Alloys Compd., 2008, 452(2), p 268-272

    Google Scholar 

  79. T. Zhang, A. Inoue, and T. Masumoto, Amorphous (Ti, Zr, Hf)-Ni-Cu Ternary Alloys with a Wide Supercooled Liquid Region, Mater. Sci. Eng. A, 1994, 181–182, p 1423-1426

    Google Scholar 

  80. J. Basu and S. Ranganathan, Glass Forming Ability and Stability: Ternary Cu Bearing Ti, Zr, Hf Alloys, Intermetallics, 2009, 17(3), p 128-135

    Google Scholar 

  81. C.G. Woychik, D.H. Lowndes, and T.B. Massalski, Solidification Structures in Melt-Spun and Pulsed Laser-Quenched Cu-Ti Alloys, Acta Metall., 1985, 33(10), p 1861-1871

    Google Scholar 

  82. K. Aoki and T. Masumoto, in Proceedings of the MRS International Meeting on Advanced Materials: June 1June 3, 1988, Sunshine City, Ikebukuro, Tokyo, Japan, M. Doyama, ed., MRS, Pittsburgh, 1989, p 393-398

  83. M.A. Turchanin, Temperature–Composition Dependence of Thermodynamic Mixing Functions of Liquid Alloys of Copper with Rare-Earth Metals, Powder Metal. Metal Ceram., 2011, 50(7–8), p 512-527

    Google Scholar 

  84. A.A. Turchanin, I.A. Tomilin, and M.A. Turchanin, Enthalpies of Formation of Liquid, Amorphous, and Crystalline phases in the System Ni–Zr, Zh. Fiz. Khim., 1999, 73(11), p 1911-1918

    Google Scholar 

  85. P.G. Agraval, L.A. Dreval, and M.A. Turchanin, Thermodynamic Properties of Iron Melts with Titanium, Zirconium, and Hafnium, Powder Metal. Metal Ceram., 2017, 55(11–12), p 707-716

    Google Scholar 

  86. A. Abdulov, M. Turchanin, P. Agraval, and L. Dreval, Modern Approaches to Prediction of Composition Ranges of Glass Formation in Metallic Systems, in Proceedings of the 9th International Conference RaDMI 2009, 16–19 Sept (Vrnjačka Banja, Serbia), 2009, p 965-973

  87. X.L. Meng, Y.D. Fu, W. Cai, Q.F. Li, and L.C. Zhao, Cu Content and Annealing Temperature Dependence of Martensitic Transformation of Ti36Ni49−xHf15Cux Melt Spun Ribbons, Intermetallics, 2009, 17(12), p 1078-1084

    Google Scholar 

  88. N. Resnina, S. Belyaev, and A. Shelyakov, Influence of the Dynamic Crystallization Conditions on the Martensitic Transformation in the Ti40.7Hf9.5Ni39.8Cu10 Shape Memory Alloy, Int. J. Mater. Res., 2009, 100(3), p 356-358

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Ukraine under the Grant 0119U101646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Dreval.

Additional information

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Günter Effenberg. The special issue was organized by Andrew Watson, Coventry University, Coventry, United Kingdom; Svitlana Iljenko, MSI, Materials Science International Services GmbH, Stuttgart, Germany; and Rainer Schmid-Fetzer, Clausthal University of Technology, Clausthal-Zellerfield, Germany.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchanin, M., Agraval, P., Dreval, L. et al. Calorimetric Investigation of the Mixing Enthalpy of Liquid Hf-Ni-Ti Alloys and Thermodynamic Properties and Chemical Ordering in Quaternary Liquid Cu-Hf-Ni-Ti Alloys. J. Phase Equilib. Diffus. 41, 469–490 (2020). https://doi.org/10.1007/s11669-020-00806-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00806-4

Keywords

Navigation