Skip to main content
Log in

Diffusion Kinetics in Mg-Cu Binary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The solid-solid interfacial reaction in the Mg-Cu binary diffusion couples was studied at temperatures of 673, 703 and 733 K, with reaction time ranging from 24 to 72 h. MgCu2 and Mg2Cu were formed between Mg and Cu matrixes at the studied temperatures. The growths of MgCu2 and Mg2Cu followed the parabolic kinetics, which suggests that the growth of the two phases is controlled by bulk diffusion mechanisms. The activation energies for growths of MgCu2 and Mg2Cu were determined to be 147.57 ± 1.49 and 139.12 ± 1.30 kJ/mol, respectively. The interdiffusion coefficients were evaluated as functions of compositions in MgCu2 and Mg2Cu intermetallic phases at the studied temperatures, which were further utilized for evaluating the activation energies and frequency factors for interdiffusion in each phase. The Mg impurity diffusion coefficient in Cu was higher than the Cu impurity diffusion coefficient in Mg. The activation energy and pre-exponential factor for diffusion of Mg impurity in Cu were determined to be 139.38 ± 0.65 kJ/mol and 1.02(±0.26) × 10−4 m2/s, respectively, while those for diffusion of Cu impurity in Mg were determined to be 164.04 ± 7.18 kJ/mol and 3.10(±0.31) × 10−3 m2/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Kiani, I. Gandikota, M. Rais-Rohani, and K. Motoyama, Design of Lightweight Magnesium Car Body Structure Under Crash and Vibration Constraints, J. Magnes. Alloys, 2014, 2(2), p 99-108

    Article  Google Scholar 

  2. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloys, 2013, 1(1), p 2-22

    Article  Google Scholar 

  3. B.L. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng., A, 2001, 302(1), p 37-45

    Article  Google Scholar 

  4. M. Mezbahul-Islam, A.O. Mostafa, and M. Medraj, Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data, J. Mater., 2014, doi:10.1155/2014/704283

    Google Scholar 

  5. J. Lei, H. Huang, X. Dong, J. Sun, B. Lu, M. Lei, Q. Wang, C. Dong, and G. Cao, Formation and Hydrogen Storage Properties of In Situ Prepared Mg-Cu Alloy Nanoparticles by Arc Discharge, Int. J. Hydrogen Energy, 2009, 34(19), p 8127-8134

    Article  Google Scholar 

  6. K. Tanaka, H.T. Takeshita, K. Kurumatani, H. Miyamura, and S. Kikuchi, The Effect of Initial Structures of Mg/Cu Super-Laminates on Hydrogen Absorption/Desorption Properties, J. Alloys Compd., 2013, 580, p S222-S225

    Article  Google Scholar 

  7. S.K. Das and I.-H. Jung, Effect of the Basal Plane Orientation on Al and Zn Diffusion in hcp Mg, Mater. Charact., 2014, 94, p 86-92

    Article  Google Scholar 

  8. S. Brennan, K. Bermudez, N.S. Kulkarni, and Y. Sohn, Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3, Metall. Mater. Trans. A, 2012, 43(11), p 4043-4052

    Article  Google Scholar 

  9. A. Mostafa and M. Medraj, On the Atomic Interdiffusion in Mg-{Ce, Nd, Zn} and Zn-{Ce, Nd} Binary Systems, J. Mater. Res., 2014, 29(13), p 1463-1479

    Article  ADS  Google Scholar 

  10. J. Dai, B. Jiang, X. Li, Q. Yang, H. Dong, X. Xia, and F. Pan, The Formation of Intermetallic Compounds During Interdiffusion of Mg-Al/Mg-Ce Diffusion Couples, J. Alloys Compd., 2015, 619, p 411-416

    Article  Google Scholar 

  11. K. Nonaka, T. Sakazawa, and H. Nakajima, Reaction diffusion in Mg-Cu system, Mater. Trans., JIM, 1995, 36, p 1463-1466

    Article  Google Scholar 

  12. Q.Z. Hong and F.M. d’Heurle, The Dominant Diffusing Species and Initial Phase Formation in Al-Cu, Mg-Cu, and Mg-Ni Systems, J. Appl. Phys., 1992, 72(9), p 4036

    Article  ADS  Google Scholar 

  13. C. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen, and H. Lukas, Assessment of the Cu-Mg System, Z. Metallkd., 1991, 82(7), p 574-581

    Google Scholar 

  14. P.D. Lee and J.D. Hunt, Hydrogen Porosity in Directional Solidified Aluminium-Copper Alloys: In Situ Observation, Acta Mater., 1997, 45(10), p 4155-4169

    Article  Google Scholar 

  15. M.S.A. Karunaratne, P. Carter, and R.C. Reed, On the Diffusion of Aluminium and Titanium in the Ni-Rich Ni-Al-Ti System Between 900 and 1200 Degrees C, Acta Mater., 2001, 49(5), p 861-875

    Article  Google Scholar 

  16. H. Strandlund and H. Larsson, Prediction of Kirkendall Shift and Porosity in Binary and Ternary Diffusion Couples, Acta Mater., 2004, 52(15), p 4695-4703

    Article  Google Scholar 

  17. C. Matano, Phys (Trans), 8, 109 (1933), in Proc. Phys. Math. Soc. Japan, 1933, p 405

  18. T. Heumann, ‘Zur Berechnung von Diffusions Koeffizienten bei Einund Mehrphasiger Diffusion in Festen Legierungen, Z. Physik. Chem., 1952, 201(1), p 168-187, in German

    Google Scholar 

  19. L.D. Hall, An Analytical Method of Calculating Variable Diffusion Coefficients, J. Chem. Phys., 1953, 21(1), p 87-89

    Article  ADS  Google Scholar 

  20. K. Lal. Diffusion of Some Elements in Magnesium, CEA Report, 1967, p 54

  21. K. Lal, V. Levy. Study of the Diffusion of Cerium and Lanthanum in Magnesium, Compt. Rend., Ser. C, 1966, 262, p 107

  22. L. Jin, D. Kevorkov, M. Medraj, and P. Chartrand, Al-Mg-RE (RE = La, Ce, Pr, Nd, Sm) Systems: Thermodynamic Evaluations and Optimizations Coupled with Key Experiments and Miedema’s Model Estimations, J. Chem. Thermodyn., 2013, 58, p 166-195

    Article  Google Scholar 

  23. V.F. Yerko, V.F. Zeleniskiy, and V.S. Krasnorutskiy, Difuzija Berillija v Magnii, Fiz. Met. Metalloved., 1966, 22(1), p 112-114, in Slovenian

    Google Scholar 

  24. L.V. Pavlinov, A.M. Gladyshev, and V.N. Bykov, Self-Diffusion in Calcium and Diffusion of Barely Soluble Impurities in Magnesium and Calcium, Phys. Met. Metall., 1968, 26(5), p 53-59

    Google Scholar 

  25. S. Brennan, A.P. Warren, K.R. Coffey, N. Kulkarni, P. Todd, M. Kilmov, and Y. Sohn, Aluminum Impurity Diffusion in Magnesium, J. Phase Equilib. Diffus., 2012, 33(2), p 121-125

    Article  Google Scholar 

  26. K. Maier, Self-Diffusion in Copper at “Low” Temperatures, Phys. Status Solidi A, 1977, 44(2), p 567-576

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from Chongqing Science and Technology Commission (CSTC2013jcyjC60001, cstc2012ggB50003, cstc2013jcyjA50020), National Natural Science Foundation of China (51171212, 51474043, 51531002), and The National Science and Technology Program of China (2013DFA71070, 2013CB632200), and the Fundamental Research Funds for the Central Universities (CDJZR13138801, CDJXS12131106), Postdoctoral Science Foundation of China (2015M572452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Jiang, B., Zhang, J. et al. Diffusion Kinetics in Mg-Cu Binary System. J. Phase Equilib. Diffus. 36, 613–619 (2015). https://doi.org/10.1007/s11669-015-0417-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0417-z

Keywords

Navigation