Skip to main content
Log in

Phase Equilibria of the Zn-Bi-Co System at 450 and 600 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The equilibrated alloys approach was adopted to determine the phase relations of the Zn-Bi-Co ternary system at 450 and 600 °C. The specimens were investigated by means of optical microscopy, scanning electron microscopy/energy-dispersive spectrometry analysis and x-ray diffraction. The experimental results show that five three-phase regions exist in the isothermal section at 450 °C and three tri-phase regions at 600 °C. Bi is almost insoluble in Co-Zn intermetallic compounds; its solubility in α-Co is less than 0.4 at.%. The solubility of Co in the L-Bi phase increases with temperature, the maximum solubility reaching 0.8 at.% at 450 °C and 1.7 at.% at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.R. Marder, The metallurgy of zinc-coated steel, Prog. Mater Sci., 2000, 45(3), p 191-271

    Article  Google Scholar 

  2. X.P. Su and N.T. Tang, The zinc-rich corner of the Zn-Fe-Ni-Si quaternary system at 450 °C, J. Phase Equilib., 2002, 23(5), p 424-431

    Article  Google Scholar 

  3. N.Y. Tang, Control of silicon reactivity in general galvanizing, J. Phase Equilib., 2008, 29(4), p 337-344

    Article  Google Scholar 

  4. T.W. Sandelin, Galvanizing characteristics of different types of steel, Wire Wire Prod., 1940, 11, p 655-676

    Google Scholar 

  5. J. Foct, P. Perrot, and G. Reumont, Interpretation of the role of silicon on the galvanizing reaction based on kinetics, morphology and thermodynamics, Scripta Metall. Mater., 1993, 28(5), p 1195-1200

    Article  Google Scholar 

  6. H. Guttman and P. Niessen, Reactivity of silicon steels hot-dip galvanizing, Can. Metall. Q., 1972, 11(4), p 609-615

    Article  Google Scholar 

  7. F.G. Li, F.C. Yin, X.P. Su, and Z. Li, Effect of Co in Zn bath on microstructures and growth kinetics of galvanizing coating on Si-containing steel, Chin. J. Nonferrous Met., 2010, 20, p 86-91

    Google Scholar 

  8. J. Vizdal, M.H. Braga, A. Kroupa et al., Thermodynamic assessment of the Bi-Sn-Zn system, Calphad, 2007, 31(4), p 438-448

    Article  Google Scholar 

  9. N. Pistofidis, G. Vourlias, S. Konidaris et al., The effect of bismuth on the structure of zinc hot-dip galvanized coatings, Mater. Lett., 2007, 61(4), p 994-997

    Article  Google Scholar 

  10. R. Fratesi, N. Ruffini, M. Malavolta, and T. Bellezze, Contemporary use of Ni, Bi in Hot-Dip galvanizing, Surf. Coat. Technol., 2002, 157(1), p 34-39

    Article  Google Scholar 

  11. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, and G. Stergioudis, The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings, Mater. Lett., 2007, 61(10), p 2007-2010

    Article  Google Scholar 

  12. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis, Microstructure of zinc hot-dip galvanized coatings used for corrosion protection, Mater. Lett., 2006, 60(6), p 786-789

    Article  Google Scholar 

  13. K.C.D. Judd, S.J. White, F. Akbari, J.R. Mcdermid, and W.T. Thompson, Zinc solubility measurements and thermodynamic evaluation of Zn-Pb-Bi ternary system, Can. Metall. Q., 2006, 45(1), p 117-130

    Article  Google Scholar 

  14. M.X. Zhao, F.C. Yin, Z. Li, Z.H. Long, and X.M. Wang, 450 °C isothermal section of the Zn-Fe-Co-Si quaternary system at the zinc-rich corner, Int. J. Mater Res., 2013, 104(1), p 35-45

    Article  Google Scholar 

  15. Z. Li, X.P. Su, and Y.H. He, 450 °C isothermal section of the Zn-Fe-Bi ternary phase diagram, J. Alloys Compd., 2008, 462(1), p 320-327

    Article  Google Scholar 

  16. V. Raghavan, Co-Fe-Zn (cobalt-iron-zinc), J. Phase Equilib., 2003, 24(6), p 551-553

    Article  MathSciNet  Google Scholar 

  17. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, 1958

    Google Scholar 

  18. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, 1990

    Google Scholar 

  19. G.P. Vassiley and M. Jiang, Thermodynamic optimization of the Co-Zn system, J. Phase Equilib., 2004, 25(3), p 259-268

    Article  Google Scholar 

  20. F. Lihl and E. Weisberg, Phase boundaries in the system Co-Zn, Z. Metallkd., 1955, 46, p 579-581

    Google Scholar 

  21. W. Köster and E. Wagner, Effect of the elements Al, Ti, V, Cu, Zn, Sn and Sb on the polymorphic transition of the cobalt, Z. Metallkd., 1937, 29, p 230-232

    Google Scholar 

  22. T. Takayama, S. Shinohara, K. Ishida, and T. Nishizawa, Anomalies in phase equilibria due to magnetic transition in Fe-Zn, Co-Zn, and Fe-Co-Zn systems, J. Phase Equilib., 1995, 16(5), p 390-395

    Article  Google Scholar 

  23. M.X. Zhao, F.C. Yin, and Z. Li, Phase equilibria of the Al-Co-Zn system at 450 °C, J. Phase Equilib., 2011, 32(3), p 183-192

    Article  Google Scholar 

  24. M.X. Zhao, Z.H. Wang, F.C. Yin, and Z. Li, Phase equilibria of the Co-Ni-Zn system at 450 °C and 600 °C, Thermochimi. Acta., 2012, 545, p 103-111

    Article  Google Scholar 

  25. H. Lind, M. Bostrom, V. Petricekc, and S. Lidina, Structure of δ1-CoZn7.8, an example of a phason pinning-unpinning transformation?, Acta Crystallogy. Sect. B, 2003, 59, p 720-729

    Article  Google Scholar 

  26. P.J. Brown, The structure of the ζ-phase in transition metal-zinc alloy systems, Acta Crystallogy., 1962, 15, p 608-612

    Article  Google Scholar 

  27. X.P. Su, N.Y. Tang, and J.M. Toguri, 450 °C isothermal section of the Fe-Zn-Si ternary phase diagram, Can. Metall. Q., 2001, 40(3), p 377-384

    Article  Google Scholar 

  28. Y.X. Liu, F.C. Yin, and Z. Li, The 450 °C isothermal section of the Zn-Bi-Ni system, J. Phase Equilib., 2008, 29(6), p 493-499

    Article  Google Scholar 

Download references

Acknowledgment

This investigation was supported by National Natural Science Foundation of China (No. 51471141), Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2014FJ2010), and opening Foundation of Key Laboratory of Materials Surface Science and Technology of Jiangsu Province (No. KFBM20150001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manxiu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, M., Yin, F. et al. Phase Equilibria of the Zn-Bi-Co System at 450 and 600 °C. J. Phase Equilib. Diffus. 36, 535–543 (2015). https://doi.org/10.1007/s11669-015-0410-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0410-6

Keywords

Navigation