Skip to main content
Log in

A Critical Assessment of Thermodynamic and Phase Diagram Data for the Ge-O System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A critical assessment of the thermodynamic and phase diagram data for the crystalline and liquid phases of the Ge-O system at ambient pressures has been carried out to provide a set of parameters which can be used as a basis for the calculation of ternary and multicomponent phase equilibria. The phase diagram reported by Massalski (Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990) does not correctly reproduce the rather limited experimental information for the system. There is some inconsistency between the rather more extensive experimental thermodynamic data for the three phases of GeO2 stable at ambient pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M. Akhmetova, A.T. Dinsdale, A.V. Khvan, V.V. Cheverikin, A. Kondratyev, and D.O. Ivanov, Experimental Investigations of the Ag-Cu-Ge System, J. Alloys Compd., 2015, accepted for publication

  2. L.V. Gurvich, I.V. Veyts, C.B. Alcock, and V.S. Iorish, Thermodynamic Properties of Individual Substances, Vol 2, Hemisphere Publishing Co., Washington, DC, 1990

    Google Scholar 

  3. V. Swamy, S.A. Decterov, and A.D. Pelton, Thermodynamic Assessment of the Ge-Si-O-Cl-H System, Glass Sci. Technol., 2003, 76(2), p 62-70

    Google Scholar 

  4. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1973

    Google Scholar 

  5. P. Richet, GeO2 vs SiO2: Glass Transitions and Thermodynamic Properties of Polymorphs, Phys. Chem. Miner., 1990, 17, p 79-88

    Article  ADS  Google Scholar 

  6. R.B. Massalski, P.R. Subramanian, H. Okamoto, and L. Kacprzak, Binary Alloy Phase Diagrams, Vol 1-3, 2nd ed., ASM International, Materials Park, OH, 1990

    Google Scholar 

  7. F.A. Trumbore, C.D. Thurmond, and M.J. Kowalchik, Germanium-Oxygen System, Chem. Phys., 1956, 24(5), p 1112

    ADS  Google Scholar 

  8. A.W. Laubengayer and D.S. Morton, Germanium XXXIX, The Polymorphism of Germanium Dioxide, J. Am. Ceram. Soc., 1932, 54(6), p 2303-2320

    Google Scholar 

  9. J.F. Sarver and F.A. Hummel, Alpha to Beta Transition in Germania Quartz and a Pressure‐Temperature Diagram for GeO2, J. Am. Ceram. Soc., 1960, 43, p 336

    Article  Google Scholar 

  10. M.M. Faktor and J.I. Carasso, Tetragonal Germanium Dioxide and Equilibria in the Ge‐O‐H System, J. Electrochem. Soc., 1965, 112, p 817

    Article  Google Scholar 

  11. G.R. Newns and R. Hanks, Thermal Behaviour of Germanium Dioxide, J. Chem. Soc. A, 1966, doi:10.1039/J19660000954

    Google Scholar 

  12. V.G. Hill and L.Y. Chang Luke, Hydrothermal Investigation of GeO2, Am. Miner., 1968, 53, p 1744

    Google Scholar 

  13. B. Monnage and R. Bouaziz, C. R. Acad. Sci., 1970, C271, p 1581

    Google Scholar 

  14. M.K. Marinov, V.M. Krivoshieva, and D.K. Stavrakieva, Dokl. Bolg. AN, 1975, 28, p 47

    Google Scholar 

  15. M. Micoulaut, L. Cormier, and G.S. Henderson, The Structure of Amorphous, Crystalline and Liquid GeO2, J. Phys. Condens. Matter, 2006, 18, p R753-R784

    Article  Google Scholar 

  16. J.F. Sarver, Am. J. Sci., 161, 259, 709

  17. J. Haines, J.M. Leger, and C. Chateau, Transition to a Crystalline High Pressure Phase in α-GeO2 at Room Temperature, Phys. Rev. B, 2000, 61(13), p 8701-8706

    Article  ADS  Google Scholar 

  18. S. Ono, T. Tsuchiya, K. Hirose, and Y. Ohishi, Phase Transition Between the CaCl2-Type and α-PbO2-Type Structures of Germanium Oxide, Phys. Rev. B., 2003, 68, p 134108-134114

    Article  ADS  Google Scholar 

  19. T. Yamanaka, K. Sugiyama, and K. Ogata, Kinetic Study of the GeO2 Transition Under High Pressure Using Synchrotron X-Radiation, J. Appl. Crystallogr., 1992, 25, p 11-15

    Article  Google Scholar 

  20. A.R. George and C.R.A. Catlow, The Computational Investigation of the Phase Transition from the GeO2 Alpha-Quartz Structure to the Rutile Structure, J. Solid State Chem., 1996, 127(2), p 137-144

    Article  ADS  Google Scholar 

  21. D.W. Kim, K. Kawamura, N. Enomoto et al., Reproduction of Pressure Induced Structural Transformation of Alpha-Quartz Type GeO2 by Molecular Dynamics, J. Ceram. Soc. Jpn., 1996, 104(12), p 1097-1099

    Article  Google Scholar 

  22. T. Tsuchiya, T. Yamanaka, and M. Matsui, Molecular Dynamics Study of the Crystal Structure and Phase Relations of the GeO2 Polymorphs, Phys. Chem. Miner., 1998, 25(2), p 94-100

    Article  ADS  Google Scholar 

  23. Z. Łodziana, K. Parlinski, and J. Hafner, Ab Initio Studies of High-Pressure Transformation in GeO2, Phys. Rev. B, 2001, 63, p 134106-134112

    Article  ADS  Google Scholar 

  24. S. Ono, T. Tsuchiya, K. Hirose, and Y. Ohishi, High-Pressure form of Pyrite-Type Germanium Dioxide, Phys. Rev. B., 2003, 68, p 14103-14107

    Article  ADS  Google Scholar 

  25. V.B. Prakapenka, L.S. Dubrovinsky, G. Shen et al., alpha-PbO2-Type High Pressure Polymorph of GeO2, Phys. Rev B, 2003, 67(13), p 132101

    Article  ADS  Google Scholar 

  26. K. Sharaki, T. Tsuchiya, and S. Ono, Structural Refinements of High Pressure Phases in Germanium Dioxide, Acta Crystall. B, 2003, B59, p 701-708

    Article  Google Scholar 

  27. I. Jackson, Melting of the Silica Isotypes SiO2, BeF2 and GeO2 at Elevated Pressures, Phys. Earth Planet. Inter., 1976, 13, p 218-231

    Article  ADS  Google Scholar 

  28. V.V. Brazhkin and A.G. Lyapin, High Pressure Phase Transformations in Liquids and Amorphous Solids, J. Phys., 2003, 15, p 6059-6084

    Google Scholar 

  29. E.S. Candidus and S. Tuomi, Germanium‐Oxygen System, J. Chem. Phys., 1955, 23, p 588

    ADS  Google Scholar 

  30. F.A. Gant, Enthalpy, Entropy and Heat Capacity at Selected Inorganic Compounds, PhD, University Alabama

  31. A. Navrotsky, Enthalpies of transformation among the tetragonal, hexagonal, and glassy modifications of GeO2, J. Inorg. Nucl. Chem., 1971, 33(4), p 1119-1124

    Article  Google Scholar 

  32. F. Müller, Ber. Dtsch. Keram. Ges., 1973, 50, p 107

    Google Scholar 

  33. P. Gross, C. Hayman, and J.T. Bingham, Heats of Formation of Germanium Tetrafluoride and of the Germanium Dioxides, Trans. Faraday Soc., 1966, 62, p 2388-2394

    Article  Google Scholar 

  34. Yu.D. Tret’yakov, V.A. Geyderikh, Zhurn. Fiz. Khimii, 1968, vol. 42, 1768

  35. I. Katayama, J. Shibata, and Z. Kozuka, Measurements of the Standard Free Energies of Formation of Sb2O3, GeO2 and In2O3 by Electrochemical Method, Nippon Kinzoku Gakkaishi, 1975, 39(9), p 990-995

    Google Scholar 

  36. H.S.C. ONeill, Standard Molar Gibbs Free Energies of Formation of the Tetragonal and Hexagonal Forms of Germanium Dioxide, J. Chem. Thermodyn., 1986, 18, p 465-471

    Article  Google Scholar 

  37. J.F. Counsell and J.F. Martin, The Entropy of Tetragonal Germanium Dioxide, J. Chem. Soc. A, 1967, doi:10.1039/J19670000560

    Google Scholar 

  38. R.J.L. Andon and K.C. Mills, Capacite Calorifique de GeO2 Tetragonal, J. Chem. Thermodyn., 1971, 3(4), p 583-587

    Article  Google Scholar 

  39. D.S. Tsagareyshvili and G.G. Gvelesiani, Teplofizika Vyskikh Temperature, 1973, 11, p 300

    Google Scholar 

  40. A.J. Majumdar and R. Roy, J. Inorg. Nucl. Chem., 1961, 1965, p 27

    Google Scholar 

  41. G. Becker and W.A. Roth, Z. Phys. Chem. Leipzig, 1932, A161, p 69

    Google Scholar 

  42. H. Hahn and R. Juza, Untersuchungen über die Nitride von Cadmium, Gallium, Indium und Germanium. Metallamide und Metallnitride. VIII. Mitteilung, Z. Anorg. Allg. Chem., 1940, 244, p 111

    Article  Google Scholar 

  43. W.L. Jolly and W.M. Latimer, The Heat of Formation of Germanic Oxide, J. Am. Chem. Soc., 1952, 74, p 5757

    Article  Google Scholar 

  44. T. Yokokawa, M. Koizumi, M. Shimoij, and K. Niwa, Equilibrium in the System GeO2-H2-Ge-H2O1, J. Am. Chem. Soc., 1957, 79, p 3365

    Article  Google Scholar 

  45. A.D. Mah, L.H. Adami, Heats and Free Energies of Formation of Germanium Dioxide. Bureau of Mines Report of Investigations, 1962

  46. J.L. Bills and F.A. Cotton, Heat of Formation of GeO2, J. Phys. Chem., 1964, 68(4), p 802-806

    Article  Google Scholar 

  47. E.G. King, Low Temperature Heat Capacities and Entropies at 298.15 K of Some Oxides of Gallium, Germanium, Molybdenum and Niobium, J. Am. Chem. Soc., 1958, 80(8), p 1799-1800

    Article  Google Scholar 

  48. K.K. Kelley, A.U. Christensen, US Bur. Mines Rept. Invest., 1961, N5710

  49. A.A. Antoniou and I.A. Morrison, Low‐Temperature Heat Capacity of Vitreous Germania, J. Appl. Phys., 1873, 1965, p 36

    Google Scholar 

  50. V.V. Tarasov and P.A. Soboleva, Zhurn Fiz. Khimii, 1970, 44, p 1590

    Google Scholar 

  51. R.G. Zeller and R.O. Pohl, Thermal Conductivity and Specific Heat of Noncrystalline Solids, Phys. Rev. B, 1971, 4, p 2029

    Article  ADS  Google Scholar 

  52. A.P. Jeapes, A.J. Leadbetter, C.G. Waterfield, and K.E. Wycherley, Low-temperature heat capacity of germanium dioxide (GeO2), Philos. Mag., 1974, 29(4), p 803-811

    Article  ADS  Google Scholar 

  53. P. Richet, D. de Ligny, and E.F. Westrum, Low Temperature Heat Capacity of GeO2 and B2O3 Glasses: Thermophysical and Structural Implications, J. Non-Cryst. Solids, 2003, 315(1-2), p 20-30

    Article  ADS  Google Scholar 

  54. K. Fitzner, K.T. Jacob, and C.B. Alcock, Solubility and Activity of Oxygen in Liquid Germanium and Germanium-Copper Alloys, Metall. Trans., 1977, 8B, p 669-674

    Article  Google Scholar 

  55. S. Otsuka, T. Sano, and Z. Kozuka, Activities of Oxygen in Liquid Bi, Sn, and Ge from Electrochemical Measurements, Metall. Trans., 1981, 12B, p 427-433

    Article  Google Scholar 

  56. A.T. Dinsdale, SGTE data for the elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  57. M. Hillert, B. Jansson, B. Sundman, and J. Ågren, A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization, Metall. Trans. A, 1985, 16A(2), p 261-266

    Article  ADS  Google Scholar 

  58. B. Sundman, Modification of the two-sublattice model for liquids, CALPHAD, 1991, 15(2), p 109-119

    Article  Google Scholar 

  59. J.-O. Andersson, T. Helander, L. Höglund, S. Pingfang, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (№ К2-2014-014). Alan Dinsdale is a member of the Materials Chemistry Committee of the IOM3, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Dinsdale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinsdale, A.T., Akhmetova, A., Khvan, A.V. et al. A Critical Assessment of Thermodynamic and Phase Diagram Data for the Ge-O System. J. Phase Equilib. Diffus. 36, 254–261 (2015). https://doi.org/10.1007/s11669-015-0379-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0379-1

Keywords

Navigation