Skip to main content
Log in

Thermodynamic Description of Ternary Fe-X-P systems. Part 5: Fe-Nb-P

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic descriptions of the Fe-Nb-P system and its binary sub-system, Fe-Nb, are developed in the frame of a new Fe-X-P (X = Al, Cr, Cu, Mn, Mo, Nb, Ni, Si, Ti) database. The thermodynamic parameters of the binary sub-systems, Fe-P and Nb-P, are taken from earlier assessments and those of the Fe-Nb-P and Fe-Nb systems are optimized in this study using literature experimental thermodynamic and phase equilibrium data. The solution phases of the system (i.e. bcc_A2, fcc_A1, Liquid) are described with the substitutional solution model. The phase Mu (Fe7Nb6) has been modeled as (Fe,Nb)7(Nb)6, while Fe2P and FeNbP, have been modeled both as (Fe,Nb)2(P). All other phases (Fe2Nb, Fe3P, FeP, Nb3P, Nb7P4, NbP, NbP2, FeNb2P, FeNb4P, (P)) are treated as stoichiometric. The assessment of this system needs improvement but more experimental information has to be available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 1: Fe-Cr-P, J. Phase Equil. Diff., 2014, 35, p 458-468. doi:10.1007/s11669-014-0314-x

    Article  Google Scholar 

  2. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 2: Fe-Cu-P, J. Phase Equil. Diff., 2014, 35, p 469-475. doi:10.1007/s11669-014-0315-9

    Article  Google Scholar 

  3. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 3: Fe-Mn-P. Submitted to J. Phase Equil. Diff.

  4. J. Miettinen, S. Louhenkilpi, H. Kytönen, and J. Laine, IDS: Thermodynamic-Kinetic-Empirical Tool for Modeling of Solidification, Microstructure and Material Properties, Math. Comput. Simulat., 2010, 80, p 1536-1550

    Article  MATH  Google Scholar 

  5. W. Huang, Thermodynamic Evaluation of the Fe–Nb–C System, Z. Metallkd., 1990, 81, p 397-404

    Google Scholar 

  6. C. Toffolon and C. Servant, Thermodynamic Assessment of the Fe-Nb System, CALPHAD., 2000, 24, p 97-112

    Article  Google Scholar 

  7. B.-J. Lee, Thermodynamic Assessment of the Fe-Nb-Ti-C-N System, Metall. Mater. Trans. A., 2001, 32, p 2423-2439

    Article  Google Scholar 

  8. A. Khvan and B. Hallstedt, Thermodynamic Description of the Fe–Mn–Nb–C System, CALPHAD., 2012, 39, p 62-69

    Article  Google Scholar 

  9. S. Liu, B. Hallstedt, D. Music, and Y. Du, Ab initio Calculations and Thermodynamic Modeling for the Fe-Mn-Nb System, CALPHAD, 2012, 38, p 43-58

    Article  Google Scholar 

  10. T. Tokunaga, N. Hanaya, H. Ohtani, and M. Hasebe, Thermodynamic Analysis of the Fe-Nb-P Ternary Phase Diagram, ISIJ Int., 2009, 49, p 947-956

    Article  Google Scholar 

  11. J.-H. Shim, C.-S. Oh, and D.N. Lee, Thermodynamic Properties and Calculation of Phase Diagram of the Fe-P System, J. Korean Inst. Met. Mater., 1996, 34, p 385-393

    Google Scholar 

  12. H. Lukas, S. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, UK, 2007

    Book  Google Scholar 

  13. V. Raghavan, Phase Diagrams for Ternary Iron Alloys, Part 3, Calcutta, Indian Institute of Metals, 1988

    Google Scholar 

  14. Z. Bejarano, S. Gama, C. Ribeiro, G. Effenberg, and C. Santos, On the Existence of the Fe2Nb3 Phase in the Fe-Nb System, Z. Metallkd., 1991, 82, p 615-620

    Google Scholar 

  15. Z. Bejarano, S. Gama, C. Ribeiro, G. Effenberg, and C. Santos, The Iron-Niobium Phase Diagram, Z. Metallkd., 1993, 84, p 160-164

    Google Scholar 

  16. N. Voronov, Splavy jeleza s niobiem (Alloys of Iron with Niobium). Izv. Akad. Nauk SSSR, Khim., 1937, 1, p 1369-1379.

  17. H. Eggers and W. Peter, The Iron-Niobium Phase Diagram, Mitt. Kaiser-Wilhelm Inst. Eisenforsch., 1938, 20, p 199-203

    Google Scholar 

  18. R. Genders and R. Harrison, Niobium-Iron Alloys, J. Iron Steel Inst., 1939, 140, p 29-37

    Google Scholar 

  19. J. Goldschmidt, The Constitution of the Iron-Niobium-Silicon System, J. Iron Steel Inst., 1960, 194, p 169-180

    Google Scholar 

  20. W. Gibson, R. Lee, and W. Hume-Rothery, Liquidus-Solidus Relations in Iron-Rich Iron-Niobium and Iron-Molybdenum Alloys, J. Iron and Steel Inst., 1961, 198, p 64-66

    Google Scholar 

  21. A. Ferrier, E. Ubelacker, and E. Wachtel, Study of the Fe-Nb Phase Diagram Between 0 and 12 at% Nb from 1200 to 1535 °C, C.R. Acad. Sci. Paris., 1964, 258, p 5424-5427

    Google Scholar 

  22. E. Abrahamson and S. Lopata, The Lattice Parameters and Solubility Limits of Alpha Iron as Affected by Some Binary Transition-Element Additions, Trans. AIME., 1966, 236, p 76-87

    Google Scholar 

  23. A. Raman, Structural Study of Niobium-Iron Alloys, Proc. Indian Acad. Sci., 1967, A65, p 256-264

    Google Scholar 

  24. W. Fischer, K. Lorenz, H. Fabritius, and D. Schlegel, Examination of the α/γ Transformation in Very Pure Binary Alloys of Iron with Molybdenum, Vanadium, Tungsten, Niobium, Tantalum, Zirconium and Cobalt, Arch. Eisenhuttenwes., 1970, 41, p 489-498

    Google Scholar 

  25. S. Voss, M. Palm, F. Stein, and D. Raabe, Phase Equilibria in the Fe-Nb System, JPED., 2011, 32, p 97-104

    Article  Google Scholar 

  26. E. Ichise and K. Horikawa, Thermodynamic Study of Fe-Ta and Fe-Nb Alloys by Means of Knudsen Cell Mass Spectrometry, ISIJ Int., 1989, 29, p 843-851

    Article  Google Scholar 

  27. Y. Iguchi, S. Nosomi, K. Saito, and T. Fuwa, Experimental Determinations of Phase Equilibria in the Fe-V-X (X:Nb, Ti) Systems and Development of Thermodynamic Database of Microalloyed Steel and its Applications, Tetsu-to-Hagane., 1982, 68, p 633-640

    Google Scholar 

  28. V. Sudavtsova, V. Kurach, and G. Batalin, Термодинамические свойства жидких двойных сплавов Fe-(Y, Zr, Nb, Mo) (Thermodynamic Properties of the Liquid Binary Alloys Fe-(Y,Zr, Nb, Mo)), Izv. Akad. Nauk SSSR Metally., 1987, 3, p 60-61

    Google Scholar 

  29. L. Schaefers, M. Rösner-Kuhn, J. Qin, and M. Frohberg, Mixing Enthalpy and Heat Content Measurements of Liquid Binary Iron-Niobium Alloys, Steel Res., 1995, 66, p 183-187

    Google Scholar 

  30. V. Drobyshev and T. Rezukhina, X-ray Investigation of the Nb–Fe System and the Determination of the Thermodynamic Properties of the Compound NbFe2, Russ. Metall., 1966, 2, p 85-89

    Google Scholar 

  31. G. Barbi, High-Temperature Electrochemical Determination of the Themodynamic Stability of the Iron-Rich, Iron-Niobium Intermetallic Phase, Z. Naturforsch., 1969, 24A, p 1580-1585

    ADS  Google Scholar 

  32. A. Niessen, F. De Boer, R. Boom, P. De Châtel, W. Mattens, and A. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II, CALPHAD, 1983, 7, p 51-70

    Article  Google Scholar 

  33. R. Vogel and W. Bleichroth, Das Dreistoffsystem Eisen-Phosphor-Niob (The Ternary System Fe-P-Nb), Arch. Eisenhüttenwes., 1962, 33, p 195-210, in German

    Google Scholar 

  34. H. Kaneko, T. Nishizawa, K. Tamaki, and A. Tanifuji, Solubility of Phosphorus in α and γ Iron, Nippon Kinzoku Gakkai-Si., 1965, 29, p 166-170, in Japanese

    Google Scholar 

  35. K. Yamada and E. Kato, Effect of Dilute Concentrations of Si, Al, Ti, V, Cr Co, Ni, Nb and Mo on the Activity Coefficient of P in Liquid Iron, Trans. Iron Steel Inst. Jpn., 1983, 23, p 51-55

    Article  Google Scholar 

  36. S. Ban-Ya, N. Maruyama, and Y. Kawase, Effects of Ti, V, Cr, Mn Co, Ni, Cu, Nb, Mo and W on the Activity of Phosphorus in Liquid Iron, J. Iron Steel Inst. Jpn., 1984, 70, p 65-72, in Japanese

    Google Scholar 

  37. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA. Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312

    Article  Google Scholar 

  38. R. Elliot and W. Rostoker, The Occurrence of Laves-Type Phases Among Transition Elements, Trans. ASM., 1958, 50, p 617-633

    Google Scholar 

  39. K. Bewilogua, R. Reichelt, K. Wetzig, and H. Wittig, Emissionselektronenmikroskopische Untersuchungen am Zweistoffsystem Niob-Eisen (Studies of the Binary System Fe-Nb by Emission Electron Microscope), Cryst. Res. Technol., 1972, 7, p 601-609

    Google Scholar 

  40. A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

Download references

Acknowledgment

Financial support of the Finnish Funding Agency for Technology and Innovation (TEKES) is gratefully acknowledged by Dr J. Miettinen. The research was carried out as part of the Finnish Metals and Engineering Competence Cluster (FIMECC)’s SIMP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gueorgui Vassilev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miettinen, J., Vassilev, G. Thermodynamic Description of Ternary Fe-X-P systems. Part 5: Fe-Nb-P. J. Phase Equilib. Diffus. 36, 68–77 (2015). https://doi.org/10.1007/s11669-014-0351-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-014-0351-5

Keywords

Navigation