Skip to main content
Log in

Investigation of the Fracture Behavior of Alfa/Polyester Composite Using Experimental and Finite Element Methods

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The importance of creating and using green items made of natural fibers and natural fiber composites rather than conventional goods has increased as awareness of sustainability has grown. Stipa tenacissima L., often known as alfa grass, is a tussock grass that is endemic to North Africa and southern Europe. In this work, alfa fiber is used as reinforcement. This study investigated the effects of atmospheric aging through three months on the mechanical properties of alfa fibers composites. Short fibers/polyester composites have been synthesized and characterized successfully with various reinforced ratios of natural fibers (i.e., 0, 10, 20 and 30 wt.%). Using experimental and finite element approaches, this work aims to investigate the fracture analysis of composite materials. The critical stress intensity factor (KIC) and J-integral have been evaluated. The results showed that the alfa coarse fibers with 30 wt.% were capable to enhance the mechanical properties of the polyester/alfa composite. This investigation also revealed that the mechanical properties of composite were notably deteriorated regarding the relative atmospheric aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Liu, T. Chen, M. Fei, R. Qiu, D. Yu, T. Fu, J. Qiu, Properties of natural fiber-reinforced bio based thermoset biocomposites: effects of fiber type and resin composition. Compos. Part B. 171, 87–95 (2019)

    Article  CAS  Google Scholar 

  2. B. Zuccarello, G. Marannano, Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater. Des. 149, 87–100 (2018)

    Article  CAS  Google Scholar 

  3. A. Zanichelli, A. Carpinteri, G. Fortese, C. Ronchei, D. Scorza, S. Vantadori, Contribution of date-palm fibres reinforcement to mortar fracture toughness. Procedia Struct. Integr. 13, 542–547 (2018). https://doi.org/10.1016/j.prostr.2018.12.089

    Article  Google Scholar 

  4. V. Prasad, K. Sekar, S. Varghese, M.A. Joseph, Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Compos. Part A Appl. Sci. Manuf. 124, 105505 (2019). https://doi.org/10.1016/j.compositesa.2019.105505

    Article  CAS  Google Scholar 

  5. A. Zeinedini, M.H. Moradi, H. Taghibeigi, J. Jamali, On the mixed mode I/II/III translaminar fracture toughness of cotton/epoxy laminated composites. Theor. Appl. Fract. Mech. 109, 102760 (2020). https://doi.org/10.1016/j.tafmec.2020.102760

    Article  CAS  Google Scholar 

  6. M. Arul, K.S.K. Sasikumar, M. Sambathkumar, R. Gukendran, N. Saravanan, Mechanical and fracture study of hybrid natural fiber reinforced composite—Coir and sugarcane leaf sheath. Mater. Today Proc. 33, 2795–2797 (2020). https://doi.org/10.1016/j.matpr.2020.02.677

    Article  CAS  Google Scholar 

  7. S. Pirmohammad, Y. Majd Shokorlou, B. Amani, Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Eng. Fract. Mech. 226, 106875 (2020). https://doi.org/10.1016/j.engfracmech.2020.106875

    Article  Google Scholar 

  8. S. Kumar, M.S. Shamprasad, Y.S. Varadarajan, M.A. Sangamesha, Coconut coir fiber reinforced polypropylene composites: investigation on fracture toughness and mechanical properties. Mater. Today Proc. 46, 2471–2476 (2021). https://doi.org/10.1016/j.matpr.2021.01.402

    Article  CAS  Google Scholar 

  9. M. Khaldi, A. Vivet, C. Poilâne, B. Ben Doudou, J. Chen J et al., Etude en rupture d’un composite à fibres végétales d’Alfa, in Conférence Matériaux 2014—Colloque Eco matériau, Nov 2014, Montpellier, France (Collection ECOMATERIAU, 2014)

  10. M. Khaldi, A. Vivet, A. Bourmaud, Z. Sereir, B. Kada, Damage analysis of composites reinforced with Alfa fibers: viscoelastic behavior and debonding at the fiber/matrix interface. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43760

    Article  Google Scholar 

  11. M. Khaldi, Modélisation micromécanique de la propagation des fissures aux interfaces fibre d’alfa/résine époxy d’un composite unidirectionnel. Thèse de doctorat. 2017. Établissement Université Mohamed Boudiaf des Sciences et de la Technologie-Mohamed Boudiaf d'Oran. Algeria

  12. ASTM Standard D5045, 1999, Standard test methods for plane strain fracture toughness and strain energy release rate of plastic materials (ASTM International, West Conshohocken, 2007). https://doi.org/10.1520/D5045-99R07E01

  13. ASTM D790-03, Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials plastics (ASTM International, West Conshohocken, 2003)

  14. J.R. Rice, A path independent integral and approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  15. D.G. Dikobe, A.S. Luyt, Effect of filler content and size on the properties of ethylene vinyl acetate copolymer–wood fiber composites. J. Appl. Polym. Sci. 103(6), 3645–3654 (2007)

    Article  CAS  Google Scholar 

  16. S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, C. Krause et al., Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites. J. Appl. Polym. Sci. 110(2), 1085–1092 (2008)

    Article  CAS  Google Scholar 

  17. H. Bouafif, A. Koubaa, P. Pere, A. Cloutier, Effect of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos. Part A Appl. Sci. Manuf. 40, 1975–1981 (2009)

    Article  Google Scholar 

  18. A.A. Silva, S. Livi, D.B. Netto, B.G. Soares, J. Duchet, J.-F. Gérard, New epoxy systems based on ionic liquid. Polymer. 54(8), 2123–2129 (2013)

    Article  CAS  Google Scholar 

  19. V.S. Candido, A.C. da Silva, N.T. Simonassi, F.S. da Luz, S.N. Monteiro, Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. J. Mater. Res. Technol. 6(4), 334–338 (2017)

    Article  CAS  Google Scholar 

  20. M. Kullayappa, C. SaiBharathreddy, G. Bharathiraja, V. Jayakumar, Investigation on fracture toughness of treated hybrid particulate reinforced polyester composite. Int. J. Pure Appl. Math. 119(12), 15677–15686 (2018)

    Google Scholar 

  21. A. Pattanaik, M. Mukharjee, S.C. Mishra, Effect of environmental aging conditions on the properties of fly ash filled epoxy composites. Adv. Compos. Mater. 29(1), 1–30 (2020)

    Article  CAS  Google Scholar 

  22. J. Nicholas, M. Mohamed, G.S. Dhaliwal et al., Effects of accelerated environmental aging on glass fiber reinforced thermo set polyurethane composites. Compos. Part B. 94, 370–378 (2016)

    Article  CAS  Google Scholar 

  23. D. Hammiche, A. Boukerrou, H. Djidjelli, Y.M. Corre, Y. Grohens, P. Isabelle, Hydrothermal ageing of alfa fiber reinforced polyvinylchloride composites. Constr. Build. Mater. 47, 293–300 (2013)

    Article  Google Scholar 

  24. P.V. Joseph, M.S. Rabello, L.H.C. Mattoso, K. Joseph, S. Thomas, Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos. Sci. Technol. 62(10–11), 1357–1372 (2002)

    Article  CAS  Google Scholar 

  25. M. Beg, K. Pickering, Reprocessing of wood fibre reinforced polypropylene composites. Part II: hygrothermal ageing and its effects. Compos. Part A. 39, 1565–1571 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Higher Education and Scientific Research Algeria (www.mesrs.dz). The authors extend their appreciation to Department of Mechanical Engineering, University of Mascara, Algeria and E-BAG Company, Mascara, Algeria

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mokhtar Bouziane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkacem, M., Fekih, S.M., Khaldi, M. et al. Investigation of the Fracture Behavior of Alfa/Polyester Composite Using Experimental and Finite Element Methods. J Fail. Anal. and Preven. (2024). https://doi.org/10.1007/s11668-024-01933-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11668-024-01933-7

Keywords

Navigation