Skip to main content
Log in

Predicting the Remaining Useful Life of a Gas Turbine Based on an Exponential Degradation Model

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In the context of rotating machinery maintenance, this study examines diagnostic, prognostic and health management (PHM) techniques, where a set of signal processing and supervised machine learning processes are used in a precise strategy that allows us to diagnose the condition of a gas turbine and also to predict its remaining useful life (RUL), to make appropriate maintenance decisions. Using a database of historical vibration signals, partial failure due to misalignment is diagnosed by Fast Fourier Transform (FFT) analysis. This partial failure can evolve into a total failure, leading to the cessation of production and higher maintenance costs. Predictive maintenance can improve its ability to predict failure phenomena using data-driven degradation modeling. On this basis, a total failure of a gas turbine can be avoided. A set of temporal and frequency health indicators are extracted at each operating cycle to be analyzed, filtered, and improved using statistical techniques such as normalization methods and correlation analysis. Additionally, the rolling average is used based on window functions and monotonicity to choose the best and most reliable indicators. Before fitting the decay curves of the selected health indicators using an exponential regression model, they were combined into a single indicator by applying the principal component analysis (PCA) technique to facilitate the adjustment process. The results showed good performance after testing the exponential model to predict the RUL on the test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.G. Li, P. Nilkitsaranont, Gas turbine performance prognostic for condition-based maintenance. Appl. Energy. 86(10), 2152–2161 (2009). https://doi.org/10.1016/j.apenergy.2009.02.011

    Article  Google Scholar 

  2. A. Mehalaine, O. Berkani, Experimental study on vibration analysis of rotor-stator rub defect in a gas turbine generator set. J. Fail. Anal. Prev. (2023). https://doi.org/10.1007/s11668-023-01739-z

    Article  Google Scholar 

  3. H. Xiong, Y. Peng, Y. Hu, L. Zhang, Y. Li, Vibration fault signal analysis and diagnosis of flue gas turbine. Eng. Fail. Anal. 134, 105981 (2022). https://doi.org/10.1016/j.engfailanal.2021.105981

    Article  CAS  Google Scholar 

  4. R. Ahmad, S. Kamaruddin, An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012). https://doi.org/10.1016/j.cie.2012.02.002

    Article  Google Scholar 

  5. R.M. Ayo-Imoru, A.C. Cilliers, A survey of the state of condition-based maintenance (CBM) in the nuclear power industry. Ann. Nucl. Energy. 112, 177–188 (2018). https://doi.org/10.1016/j.anucene.2017.10.010

    Article  CAS  Google Scholar 

  6. Q. Wang, Y. Xiao, S. Wang, W. Liu, X. Liu, A method for constructing automatic rolling bearing fault identification model based on refined composite multi-scale dispersion entropy. IEEE Access. 9, 86412–86428 (2021). https://doi.org/10.1109/ACCESS.2021.3089251

    Article  Google Scholar 

  7. M. Achouch, M. Dimitrova, K. Ziane, S. Sattarpanah Karganroudi, R. Dhouib, H. Ibrahim et al., On predictive maintenance in industry 4.0: overview, models, and challenges. Appl. Sci. 12(16), 8081 (2022)

    Article  CAS  Google Scholar 

  8. K.T.P. Nguyen, K. Medjaher, A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliab. Eng. Syst. Saf. 188, 251–262 (2019). https://doi.org/10.1016/j.ress.2019.03.018

    Article  Google Scholar 

  9. J.J. Montero Jimenez, S. Schwartz, R. Vingerhoeds, B. Grabot, M. Salaün, toward multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics. J. Manuf. Syst. 56, 539–557 (2020). https://doi.org/10.1016/j.jmsy.2020.07.008

    Article  Google Scholar 

  10. M. Kordestani, M. Saif, M.E. Orchard, R. Razavi-Far, K. Khorasani, Failure prognosis and applications—a survey of recent literature. IEEE Trans. Reliab. 70(2), 728–748 (2021). https://doi.org/10.1109/TR.2019.2930195

    Article  Google Scholar 

  11. M. Pech, J. Vrchota, J. Bednář, Predictive maintenance and intelligent sensors in smart factory: review. Sensors. 21(4), 1470 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Jasiulewicz Kaczmarek, A. Gola, Maintenance 4.0 technologies for sustainable manufacturing-an overview. IFAC-PapersOnLine. 52(10), 91–96 (2019). https://doi.org/10.1016/j.ifacol.2019.10.005

    Article  Google Scholar 

  13. W. Mao, J. He, J. Tang, Y. Li, Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Adv. Mech. Eng. 10(12), 1687814018817184 (2018). https://doi.org/10.1177/1687814018817184

    Article  Google Scholar 

  14. Poor P, Ženíšek D, Basl J. Historical overview of maintenance management strategies: development from breakdown maintenance to predictive maintenance in accordance with four industrial revolutions. (2019)

  15. N. Omri, Z. Al Masry, N. Mairot, S. Giampiccolo, N. Zerhouni, Industrial data management strategy toward an SME-oriented PHM. J. Manuf. Syst. 56, 23–36 (2020). https://doi.org/10.1016/j.jmsy.2020.04.002

    Article  Google Scholar 

  16. S. Adams, M. Malinowski, G. Heddy, B. Choo, P.A. Beling, The WEAR methodology for prognostics and health management implementation in manufacturing. J. Manuf. Syst. 45, 82–96 (2017). https://doi.org/10.1016/j.jmsy.2017.07.002

    Article  Google Scholar 

  17. C. Byington, M. Watson, M.J. Roemer, T.R. Galic, J.J. McGroarty, Prognostic enhancements to gas turbine diagnostic systems. IEEE Aerospace Conf. 103, 3247–55 (2003). https://doi.org/10.1109/AERO.2003.1234168

    Article  Google Scholar 

  18. T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, Prognosis of faults in gas turbine engines. Proceedings. 6, 163–71 (2000). https://doi.org/10.1109/AERO.2000.877892

    Article  Google Scholar 

  19. S. Wang, Q. Wang, Y. Xiao, W. Liu, M. Shang, Research on rotor system fault diagnosis method based on vibration signal feature vector transfer learning. Eng. Fail. Anal. 139, 106424 (2022). https://doi.org/10.1016/j.engfailanal.2022.106424

    Article  Google Scholar 

  20. M. de Castro-Cros, M. Velasco, C. Angulo, Machine-learning-based condition assessment of gas turbines & mdash: a review. Energies. 14(24), 8468 (2021)

    Article  Google Scholar 

  21. M. Yadegari, Real time prognostic strategies: application to gas turbines. Defect. Diffus. Forum. 312–315, 601–606 (2011). https://doi.org/10.4028/www.scientific.net/DDF.312-315.601

    Article  CAS  Google Scholar 

  22. 13381-1:2015 I. Condition monitoring and diagnostics of machines—Prognostics—part 1: general guidelines.

  23. M. Wang, H. Wang, L. Cui, G. Xiang, X. Han, Q. Zhang et al., Remaining useful life prediction for aero-engines based on time-series decomposition modeling and similarity comparisons. Aerospace. 9(10), 609 (2022)

    Article  Google Scholar 

  24. T. Berghout, M. Benbouzid, A systematic guide for predicting remaining useful life with machine learning. Electronics. 11(7), 1125 (2022)

    Article  Google Scholar 

  25. Anis MD, Editor toward remaining useful life prediction in rotating machine fault prognosis: an exponential degradation model. 2018 condition monitoring and diagnosis (CMD); 2018 23-26 Sept. 2018.

  26. A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009). https://doi.org/10.1016/j.ymssp.2008.06.009

    Article  Google Scholar 

  27. X. Kong, J. Yang, Remaining useful life prediction of rolling bearings based on RMS-MAVE and dynamic exponential regression model. IEEE Access. 7, 169705 (2019). https://doi.org/10.1109/ACCESS.2019.2954915

    Article  Google Scholar 

  28. S. Sajid, A. Haleem, S. Bahl, M. Javaid, T. Goyal, M. Mittal, Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 45, 4898–905 (2021). https://doi.org/10.1016/j.matpr.2021.01.357

    Article  CAS  Google Scholar 

  29. C. Hu, B.D. Youn, P. Wang, Y.J. Taek, Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf. 103, 120–135 (2012). https://doi.org/10.1016/j.ress.2012.03.008

    Article  Google Scholar 

  30. K. Javed, R. Gouriveau, N. Zerhouni, State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues toward maturity at different technology readiness levels. Mech. Syst. Signal Process. 94, 214–236 (2017). https://doi.org/10.1016/j.ymssp.2017.01.050

    Article  Google Scholar 

  31. B. Wang, Y. Lei, N. Li, N. Li, A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Trans. Reliab. 69(1), 401–412 (2020). https://doi.org/10.1109/TR.2018.2882682

    Article  Google Scholar 

  32. Bejaoui I, Bruneo D, Xibilia MG, editors. A data-driven prognostics technique and RUL prediction of rotating machines using an exponential degradation model. 2020 7th international conference on control, decision and information technologies (CoDIT); 2020 29 June-2 July 2020.

  33. N.M. Thoppil, V. Vasu, C.S.P. Rao, Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics. Int. J. Syst. Assur. Eng. Manag. 12(5), 1001–1010 (2021). https://doi.org/10.1007/s13198-021-01190-z

    Article  Google Scholar 

  34. W. Caesarendra, T. Tjahjowidodo, A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing. Machines. 5(4), 21 (2017)

    Article  Google Scholar 

  35. M. Tahan, E. Tsoutsanis, M. Muhammad, Z.A. Abdul Karim, Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review. Appl. Energy. 198, 122–44 (2017). https://doi.org/10.1016/j.apenergy.2017.04.048

    Article  Google Scholar 

  36. K.M. Al-Hussain, I. Redmond, Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. J. Sound Vib. 249(3), 48398 (2002). https://doi.org/10.1006/jsvi.2001.3866

    Article  Google Scholar 

  37. M. Akhtar, M.S. Kamran, N. Hayat, A.U. Rehman, A.A. Khan, High-vibration diagnosis of gas turbines: an experimental investigation. J. Vib. Control. 27(1–2), 3–17 (2020). https://doi.org/10.1177/1077546320923917

    Article  Google Scholar 

  38. S. Cofre-Martel, E.L. Droguett, M. Modarres, Big machinery data preprocessing methodology for data-driven models in prognostics and health management. Sensors. 21(20), 6841 (2021). https://doi.org/10.3390/s21206841

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Lei, Signal processing and feature extraction, in Intelligent Fault diagnosis and remaining useful life prediction of rotating machinery. (Elsevier, New York, 2017), p.17–66. https://doi.org/10.1016/B978-0-12-811534-3.00002-0

    Chapter  Google Scholar 

  40. P. Jain, S. Bhosle, Analysis of vibration signals caused by ball bearing defects using time-domain statistical indicators. Int. J. Adv. Technol. Eng. Exp. 9, 700–715 (2022). https://doi.org/10.19101/IJATEE.2021.875416

    Article  Google Scholar 

  41. Brownlee J. Data preparation for machine learning: data cleaning, feature selection, and data transforms in python: machine learning mastery; 2020. https://books.google.dz/books?id=uAPuDwAAQBAJ

  42. B. Ratner, The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 17(2), 139–142 (2009). https://doi.org/10.1057/jt.2009.5

    Article  Google Scholar 

  43. F. Elasha, S. Shanbr, X. Li, D. Mba, Prognosis of a wind turbine gearbox bearing using supervised machine learning. Sensors. 19(14), 3092 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  44. E. Zivot, J. Wang, Time series regression modeling, in Modeling financial time series with S-Plus®. ed. by E. Zivot, J. Wang (Springer, New York, 2003), p.167–207

    Chapter  Google Scholar 

  45. S. Karamizadeh, S. Abdullah, A. Manaf, M. Zamani, A. Hooman, An overview of principal component analysis. J Signal Inform Process. (2013). https://doi.org/10.4236/jsip.2013.43B031

    Article  Google Scholar 

  46. M. Ringnér, What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008). https://doi.org/10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  47. G. Liu, W. Fan, F. Li, G. Wang, D. You, Remaining useful life prediction of nuclear power machinery based on an exponential degradation model. Sci. Technol. Nuclear Inst. 2022, 9895907 (2022). https://doi.org/10.1155/2022/9895907

    Article  Google Scholar 

  48. I. Bejaoui, D. Bruneo, M.G. Xibilia, Remaining useful life prediction of broken rotor bar based on data-driven and degradation model. Appl. Sci. 11(16), 7172 (2021)

    Article  Google Scholar 

  49. Botchkarev A (2018) Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv preprint arXiv:180903006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehalaine Abdelfettah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfettah, M., Oualid, B. Predicting the Remaining Useful Life of a Gas Turbine Based on an Exponential Degradation Model. J Fail. Anal. and Preven. (2024). https://doi.org/10.1007/s11668-024-01921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11668-024-01921-x

Keywords

Navigation