Skip to main content
Log in

Erosion of a Titanium Plate Heat Exchanger Due to Hydrogenation

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The paper presents an analysis of tests carried out on a titanium plate of a heat exchanger in which the flowing medium was hot gases with a temperature of 110 °C and a pH of less than 1. Strong hydrogenation of the titanium plate caused by the corrosion of the adjacent steel frame plate was detected. As a result of the synergy of the hydrogenation and erosion, a relative reduction in the thickness of the plate was observed locally by up to 94% in relation to the thickness of the titanium plate in the area not affected by degradation. The results of this study are not only of key engineering importance with regard to equipment design and the prevention of mechanical failures in titanium heat exchangers, but also with regard to equipment in other industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Standard specification for titanium and titanium alloy strip, sheet, and plate

  2. I.N. Andijani, S. Ahmad, A.U. Malik, Corrosion behavior of titanium metal in the presence of inhibited sulfuric acid at 50 °C. Desalination. 129(1), 45–51 (2000). https://doi.org/10.1016/S0011-9164(00)00050-3

    Article  CAS  Google Scholar 

  3. I.G.R. Santos, G.S. Vacchi, R. Silva, C.L. Kugelmeier, D.C.C. Magalhães, G.R. Campesan, C.A.D. Rovere, Failure analysis of a titanium Coriolis mass flow meter: a case of hydrogen embrittlement. Eng. Fail. Anal. 115, 104618 (2020). https://doi.org/10.1016/j.engfailanal.2020.104618

    Article  CAS  Google Scholar 

  4. F.J. Chen, C. Yao, Z.G. Yang, Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part I: corrosion and wear. Eng. Fail. Anal. 37, 29–41 (2014). https://doi.org/10.1016/j.engfailanal.2013.11.003

    Article  CAS  Google Scholar 

  5. F.J. Chen, C. Yao, Z.G. Yang, Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part II: erosion and cavitation corrosion. Eng. Fail. Anal. 37, 42–52 (2014). https://doi.org/10.1016/j.engfailanal.2013.11.002

    Article  CAS  Google Scholar 

  6. S. Shen, X. Li, P. Zhang, Y. Nan, X. Song, Failure analysis and fatigue investigation on titanium tubes in a condenser. J. Fail. Anal. Prev. 16, 975–981 (2016). https://doi.org/10.1007/s11668-016-0171-5

    Article  Google Scholar 

  7. H.M. Shalaby, H. Al-Mazeedi, H. Gopal, N. Tanoli, Failure of titanium condenser tube. Eng. Fail. Anal. 18(8), 1990–1997 (2011). https://doi.org/10.1016/j.engfailanal.2011.05.008

    Article  CAS  Google Scholar 

  8. Y. Gong, Z.G. Yang, J.Z. Yuan, Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant Part II: Mechanical degradation. Werkst. Korros. 63(1), 18–28 (2012). https://doi.org/10.1002/maco.201106190

    Article  CAS  Google Scholar 

  9. Z.G. Yang, Y. Gong, J.Z. Yuan, Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant Part I: Electrochemical corrosion. Werkst. Korros. 63(1), 7–17 (2012). https://doi.org/10.1002/maco.201106189

    Article  CAS  Google Scholar 

  10. V. Romanovski, Y.S. Hedberg, A. Paspelau, V. Frantskevich, J.J. Noël, E. Romanovskaia, Corrosion failure of titanium tubes of a heat exchanger for the heating of dissolving lye. Eng. Fail. Anal. 129, 105722 (2021). https://doi.org/10.1016/j.engfailanal.2021.105722

    Article  CAS  Google Scholar 

  11. M.M. Lachowicz, M.B. Lachowicz, A. Gertruda, Assessment of the possibility of galvanic corrosion in aluminum microchannel heat exchangers. Crystals. 12, 1439 (2022). https://doi.org/10.3390/cryst12101439

    Article  CAS  Google Scholar 

  12. M.M. Lachowicz, A metallographic case study of formicary corrosion in heat exchanger copper tubes. Eng. Fail. Anal. 111, 104502 (2020). https://doi.org/10.1016/j.engfailanal.2020.104502

    Article  CAS  Google Scholar 

  13. M. Montgomery, A. Enemark, A. Hangaard, Failure of titanium condenser tubes after 24 years power plant service. J. Fail. Anal. Preven. 14, 554–563 (2014). https://doi.org/10.1007/s11668-014-9862-y

    Article  Google Scholar 

  14. M.J. Tan, X.J. Zhu, S. Thiruvarudchelvan, Cavitation phenomenon of commercially pure titanium. J. Mater. Process. Technol. 191(1–3), 202–205 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.078

    Article  CAS  Google Scholar 

  15. Q.L. Ma, H. Xu, Z.W. Wang, F. Hou, L.Y. Xu, Failure analysis and critical manufacturing technology research on titanium condensers. Eng. Fail. Anal. 12, 432–439 (2005). https://doi.org/10.1016/j.engfailanal.2004.10.005

    Article  CAS  Google Scholar 

  16. M.M. Lachowicz, M.B. Lachowicz, Analysis of the causes of corrosion on bearing steel transported by sea. Mater. Eng. (Inżynieria Materiałowa). 39(4), 22–26 (2018)

    Article  Google Scholar 

  17. H. Wang, Y. Song, J. Yu, D. Shan, H. Han, Characterization of filiform corrosion of Mg–3Zn Mg alloy. J. Electrochem. Soc. 164, C574 (2017)

    Article  CAS  Google Scholar 

  18. D. Jizhou, X. Kuangdi, Filiform corrosion, causes of, in The ECPH encyclopedia of mining and metallurgy. ed. by K. Xu (Springer, Singapore, 2023)

    Google Scholar 

  19. H.M. Shalaby, Failure investigation of Muntz tubesheet and Ti tubes of surface condenser. Eng. Fail. Anal. 13(5), 780–788 (2006). https://doi.org/10.1016/j.engfailanal.2005.02.003

    Article  CAS  Google Scholar 

  20. Y. Zhu, T.W. Heo, J.N. Rodriguez, P.K. Weber, R. Shi, B.J. Baer, F.F. Morgado, S. Antonov, K.E. Kweon, E.B. Watkins, D.J. Savage, J.E. Chapman, N.D. Keilbart, Y. Song, Q. Zhen, B. Gault, S.C. Vogel, S.T. Sen-Britain, M.G. Shalloo, C. Orme, M. Bagge-Hansen, C. Hahn, T.A. Pham, D.D. Macdonald, S.R. Qiu, B.C. Wood, Hydriding of titanium: recent trends and perspectives in advanced characterization and multiscale modeling. Curr. Opin. Solid State Mater. Sci. 26, 101020 (2022). https://doi.org/10.1016/j.cossms.2022.101020

    Article  ADS  CAS  Google Scholar 

  21. S. Yan, G.L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, L. Zhou, A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 34, 421–435 (2018). https://doi.org/10.1016/j.jmst.2017.11.021

    Article  CAS  Google Scholar 

  22. Y. Liu, A. Alfantazi, R.F. Schaller, E. Asselin, Localised instability of titanium during its erosion-corrosion in simulated acidic hydrometallurgical slurries. Corros. Sci. 174, 108816 (2020). https://doi.org/10.1016/j.corsci.2020.108816

    Article  CAS  Google Scholar 

  23. E. Tal-Gutelmacher, D. Eliezer, Hydrogen-assisted degradation of titanium based alloys. Mater. Trans. 45, 1594–1600 (2004). https://doi.org/10.2320/matertrans.45.1594

    Article  CAS  Google Scholar 

  24. M.A. Rodríguez, Anticipated degradation modes of metallic engineered barriers for high-level nuclear waste repositories. JOM. 66, 503–525 (2014). https://doi.org/10.1007/s11837-014-0873-7

    Article  CAS  Google Scholar 

  25. G. Nakayama, Y. Sakakibara, S. Kawakami, Long term integrity against corrosion of titanium used for TRU waste container. Corros. Eng. Sci. Technol. 46, 159–164 (2011). https://doi.org/10.1179/1743278210Y.0000000018

    Article  CAS  Google Scholar 

  26. L. Covington, R. Schutz, Effects of iron on the corrosion resistance of titanium, in Industrial applications of titanium and zirconium. ed. by E. Kleefisch (ASTM International, West Conshohocken, 1981), p.163–180

    Chapter  Google Scholar 

  27. B. N. Popov, Chapter 1—Evaluation of corrosion, Editor(s): Branko N. Popov, Corrosion engineering, Elsevier, 2015, 1–28, ISBN 9780444627223, https://doi.org/10.1016/B978-0-444-62722-3.00001-X

  28. D. Setoyama, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, Mechanical properties of titanium hydride. J. Alloys Compd. 381, 215–220 (2004). https://doi.org/10.1016/j.jallcom.2004.04.073

    Article  CAS  Google Scholar 

  29. Q. Tan, Z. Yan, R. Li, Y. Ren, Y. Wang, B. Gault, S. Antonov, In-situ synchrotron-based high energy x-ray diffraction study of the deformation mechanism of δ -hydrides in a commercially pure titanium. Scr. Mater. 213, 114608 (2022). https://doi.org/10.1016/j.scriptamat.2022.114608

    Article  CAS  Google Scholar 

  30. A. Neville, B.A.B. McDougall, Erosion–and cavitation–corrosion of titanium and its alloys. Wear. 250, 726–735 (2001). https://doi.org/10.1016/S0043-1648(01)00709-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena M. Lachowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachowicz, M.B., Lachowicz, M.M. & Dziuba-Majcher, K. Erosion of a Titanium Plate Heat Exchanger Due to Hydrogenation. J Fail. Anal. and Preven. (2024). https://doi.org/10.1007/s11668-024-01904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11668-024-01904-y

Keywords

Navigation