Skip to main content
Log in

Plugging Analysis and Shear Model of Pressurized Pipeline Struck by Destructive Flat-Nosed Impactors

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Offshore pressurized pipelines are prone to rupture and perforation in several high-velocity impact conditions. Perforation failure combined with local shear plugging occurs when pressurized pipelines are subjected to flat-nosed impactors, such as torpedoes and explosive projectiles. In this paper, the perforation and plugging phenomena were systemically studied to reveal the failure features and impact limits. Qualitative descriptions of the plugging phenomenon were performed to understand the mode characteristics. The typical impact process for crack propagation and plug formation was analyzed. Effects of structural parameters on rupture and perforation limits were investigated to reveal the failure mechanisms. Simplified mechanical models considering strain rate and internal pressure were proposed to obtain the perforation limit and residual velocity. Critical shear strain and ultimate penetration depth were derived for the mechanical models. These results revealed the plugging phenomena and impact limits of pressurized pipelines impacted by flat-nosed impactors, which can provide the theoretical basis of critical impact conditions for protection design and experience reference of ultimate failure extent for damage assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this published article.

References

  1. M. Kristoffersen, F. Casadei, T. Børvik, M. Langseth, Impact against empty and water-filled X65 steel pipes - Experiments and simulations. Int. J. Impact Eng. 71, 73–88 (2014). https://doi.org/10.1016/j.ijimpeng.2014.04.004

    Article  Google Scholar 

  2. Z. Yu, J. Amdahl, A review of structural responses and design of offshore tubular structures subjected to ship impacts. Ocean Eng. 154(15), 177–203 (2018). https://doi.org/10.1016/j.oceaneng.2018.02.009

    Article  Google Scholar 

  3. K.A. Macdonald, A. Cosham, C.R. Alexander, P. Hopkins, Assessing mechanical damage in offshore pipelines - Two case studies. Eng. Fail. Anal. 14(8), 1667–1679 (2007). https://doi.org/10.1016/j.engfailanal.2006.11.074

    Article  Google Scholar 

  4. DNV-ST-F101, Submarine Pipeline Systems, Norw. Det Nor. Verit. 2021.

  5. G.Y. Lu, S.Y. Zhang, J.P. Lei, J.L. Yang, Dynamic responses and damages of water-filled pre-pressurized metal tube impacted by mass. Int. J. Impact Eng. 34(10), 1594–1601 (2006). https://doi.org/10.1016/j.ijimpeng.2006.07.006

    Article  Google Scholar 

  6. A. Palmer, A. Neilson, S. Sivadasan, Pipe perforation by medium-velocity impact. Int. J. Impact Eng. 32(7), 1145–1157 (2006). https://doi.org/10.1016/j.ijimpeng.2004.09.010

    Article  Google Scholar 

  7. N. Jones, R.S. Birch, Low-velocity impact of pressurised pipelines. Int. J. Impact Eng. 37(2), 207–219 (2010). https://doi.org/10.1016/j.ijimpeng.2009.05.006

    Article  Google Scholar 

  8. M. Nishida, K. Tanaka, Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres. Int. J. Impact Eng. 32(12), 2000–2016 (2006). https://doi.org/10.1016/j.ijimpeng.2005.06.010

    Article  Google Scholar 

  9. Y. Zhou, S. Zhang, Rupture and perforation responses of pressurized tubular members subjected to medium-velocity transverse impact loading. Eng. Fail. Anal. 127, e105387 (2021). https://doi.org/10.1016/j.engfailanal.2021.105387

    Article  Google Scholar 

  10. M. Zeinoddini, H. Arabzadeh, M. Ezzati, G.A.R. Parke, Response of submarine pipelines to impacts from dropped objects: Bed flexibility effects. Int. J. Impact Eng. 62, 129–141 (2013). https://doi.org/10.1016/j.ijimpeng.2013.06.010

    Article  Google Scholar 

  11. F. Jiang, S. Dong, Y. Zhao, Z. Xie, Investigation on the deformation response of submarine pipelines subjected to impact loads by dropped objects. Ocean Eng. 194(15), e106638 (2019). https://doi.org/10.1016/j.oceaneng.2019.106638

    Article  Google Scholar 

  12. X. Gao, Y. Shao, L. Xie, D. Yang, Behavior of API 5L X56 submarine pipes under transverse impact. Ocean Eng. 206, e107337 (2020). https://doi.org/10.1016/j.oceaneng.2020.107337

    Article  Google Scholar 

  13. A. Palmer, M. Touhey, S. Holder, M. Anderson, Full-scale impact tests on pipelines. Int. J. Impact Eng. 32(8), 1267–1283 (2006). https://doi.org/10.1016/j.ijimpeng.2004.09.003

    Article  Google Scholar 

  14. T. de Vuyst, R. Vignjevic, A. AzorinAlbero, M. Anderson, The effect of the orientation of cubical projectiles on the ballistic limit and failure mode of AA2024-T351 sheets. Int. J. Impact Eng. 104, 21–37 (2017). https://doi.org/10.1016/j.ijimpeng.2017.01.026

    Article  Google Scholar 

  15. T.G. Zhang, W.J. Stronge, Theory for ballistic limit of thin ductile tubes hit by blunt missiles. Int. J. Impact Eng. 18(7–8), 735–752 (1996). https://doi.org/10.1016/S0734-743X(96)00033-4

    Article  Google Scholar 

  16. A. Rusinek, J.A. Rodríguez-Martínez, R. Zaera, J.R. Klepaczko, Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles. Int. J. Impact Eng. 36(4), 565–587 (2009). https://doi.org/10.1016/j.ijimpeng.2008.09.004

    Article  Google Scholar 

  17. T. Børvik, M. Langseth, O.S. Hopperstad, J.R. Klepaczko, Ballistic penetration of steel plates, 22(9), 855-886 (1999). https://doi.org/10.1016/S0734-743X(99)00011-1

  18. C. Palomby, W.J. Stronge, Blunt missile perforation of thin plates and shells by discing. Int. J. Impact Eng. 7(1), 85–100 (1988). https://doi.org/10.1016/0734-743X(88)90014-0

    Article  Google Scholar 

  19. C.A. Calder, W. Goldsmith, Plastic deformation and perforation of thin plates resulting from projectile impact. Int. J. Solids Struct. 7, 863–881 (1971). https://doi.org/10.1016/0020-7683(71)90096-5

    Article  Google Scholar 

  20. X.W. Chen, Q.M. Li, Perforation of a thick plate by rigid projectiles. Int. J. Impact Eng. 28(7), 743–759 (2003). https://doi.org/10.1016/S0734-743X(02)00152-5

    Article  Google Scholar 

  21. S.R. Reid, T.Y. Reddy, Effect of strain hardening on the lateral compression of tubes between rigid plates. Int. J. Solid Struct. 14, 213–225 (1977). https://doi.org/10.1016/0020-7683(78)90026-4

    Article  Google Scholar 

  22. M. Burley, J.E. Campbell, J. Dean, T.W. Clyne, Johnson-Cook parameter evaluation from ballistic impact data via iterative FEM modelling. Int. J. Impact Eng. 112, 180–192 (2018). https://doi.org/10.1016/j.ijimpeng.2017.10.012

    Article  Google Scholar 

  23. G.R. Johnson, T.J. Holmquist, Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys. 64(8), 3901–3910 (1988). https://doi.org/10.1063/1.341344

    Article  CAS  Google Scholar 

  24. H. Arabzadeh, M. Zeinoddini, Dynamic response of pressurized submarine pipelines subjected to transverse impact loads. Procedia Eng. 14, 648–655 (2011). https://doi.org/10.1016/j.proeng.2011.07.082

    Article  Google Scholar 

  25. M. Kristoffersen, T. Børvik, I. Westermann, M. Langseth, Impact against X65 steel pipes - An experimental investigation. Int. J. Solids Struct. 50(20–21), 3430–3445 (2013). https://doi.org/10.1016/j.ijsolstr.2013.06.013

    Article  CAS  Google Scholar 

  26. D. Liu, W.J. Stronge, Ballistic limit of metal plates struck by blunt deformable missiles: experiments. Int. J. Solids Struct. 37(10), 1403–1423 (2000). https://doi.org/10.1016/S0020-7683(98)00322-9

    Article  Google Scholar 

  27. R. Masri, D. Durban, Ballistic limit predictions for perforation of aluminium armour plates by rigid nose-pointed projectiles. Int. J. Impact Eng. 131, 291–303 (2019). https://doi.org/10.1016/j.ijimpeng.2019.05.006

    Article  Google Scholar 

  28. T. Jankowiak, K.M. Alexis Rusinek, R.P. Kpenyigba, Ballistic behavior of steel sheet subjected to impact and perforation. Steel Comp. Struct. 16(6), 595–609 (2014). https://doi.org/10.12989/scs.2014.16.6.595

    Article  Google Scholar 

  29. M.J. Forrestal, T.L. Warren, Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int. J. Impact Eng. 36(2), 220–225 (2009)

    Article  Google Scholar 

  30. H.M. Wen, N. Jones, Low-velocity perforation of punch-impact-loaded metal plates. J. Press. Vessel Technol. - Trans. ASME. 118, 181–187 (1996). https://doi.org/10.1115/1.2842178

    Article  CAS  Google Scholar 

  31. X.W. Chen, Q.M. Li, Perforation of a thick plate by rigid projectiles. Int. J. Impact Eng. 28, 743–759 (2003). https://doi.org/10.1016/S0734-743X(02)00152-5

    Article  Google Scholar 

  32. N. Jones, S.-B. Kim, Q.M. Li, Response and failure of ductile circular plates struck by a mass. J. Press. Vessel Technol. 119(3), 332–342 (1997). https://doi.org/10.1115/1.2842313

    Article  Google Scholar 

  33. Y.L. Bai, W. Johnson, Plugging: Physical understanding and energy absorption. Met. Technol. 9, 182–190 (1982). https://doi.org/10.1016/j.jmps.2017.06.016

    Article  CAS  Google Scholar 

  34. H.M. Wen, W.H. Sun, Transition of plugging failure modes for ductile metal plates under impact by flat-nosed projectiles. Mech. Based Des. Struct. Mech. 38, 86–104 (2010). https://doi.org/10.1080/15397730903415892

    Article  Google Scholar 

  35. N. Jones, R.S. Birch, Influence of internal pressure on the impact behavior of steel pipelines. J. Press. Vessel Technol. - Trans. ASME. 118(4), 464–471 (1996). https://doi.org/10.1115/1.2842215

    Article  Google Scholar 

  36. N. Jones, R.S. Birch, Influence of internal pressure on the impact behavior of steel pipelines. J Pressure Vessel Technol. 118(4), 464–471 (1996). https://doi.org/10.1115/1.2842215

    Article  Google Scholar 

  37. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985). https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  38. Y. Cao, Y. Zhen, M. Song, H. Yi, Determination of Johnson-Cook parameters and evaluation of Charpy impact test performance for X80 pipeline steel. Int. J. Mech. Sci. 179, e105627 (2020). https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  39. O. Obeid, G. Alfano, H. Bahai, H. Jouhara, Mechanical response of a lined pipe under dynamic impact. Eng. Fail. Anal. 88, 35–53 (2018). https://doi.org/10.1016/j.engfailanal.2018.02.013

    Article  CAS  Google Scholar 

  40. M.E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16, 1–99 (1978). https://doi.org/10.1016/j.engfailanal.2018.02.013

    Article  CAS  Google Scholar 

  41. Y. Zhou, S. Zhang, Perforation analysis and limit prediction of submarine pipelines subjected to extreme impact loadings. Ocean Eng. 246, e110651 (2022). https://doi.org/10.1016/j.oceaneng.2022.110651

    Article  Google Scholar 

  42. T. Fras, C.C. Roth, D. Mohr, Dynamic perforation of ultra-hard high-strength armor steel: Impact experiments and modeling. Int. J. Impact Eng. 131, 256–271 (2019). https://doi.org/10.1016/j.ijimpeng.2019.05.008

    Article  Google Scholar 

  43. W.Q. Shen, N.O. Rieve, B. Baharun, A study on the failure of circular plates struck by masses. Part 1: experimental results. Int. J. Impact Eng. 27, 399–412 (2002). https://doi.org/10.1016/S0734-743X(01)00146-4

    Article  Google Scholar 

  44. Z.Y. Wang, Y. Zhao, G.W. Ma, A numerical study on the high-velocity impact behavior of pressure pipes. J. Zhejiang Univ. Sci. A. 17(6), 443–453 (2016). https://doi.org/10.1631/jzus.A1500112

    Article  Google Scholar 

  45. Q.M. Li, N. Jones, Shear and adiabatic shear failures in an impulsively loaded fully clamped beam. Int. J. Impact Eng. 22(6), 589–607 (1999). https://doi.org/10.1631/jzus.A1500112

    Article  Google Scholar 

  46. D. Rittel, L.H. Zhang, S. Osovski, The dependence of the Taylor-Quinney coefficient on the dynamic loading mode. J. Mech. Phys. Solids. 107, 96–114 (2017). https://doi.org/10.1016/j.jmps.2017.06.016

    Article  CAS  Google Scholar 

  47. X.W. Chen, Q.M. Li, S.C. Fan, Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt projectile. Int. J. Impact Eng. 31(7), 877–893 (2005). https://doi.org/10.1016/j.ijimpeng.2004.04.011

    Article  Google Scholar 

  48. X. Teng, T. Wierzbicki, Dynamic shear plugging of beams and plates with an advancing crack. Int. J. Impact Eng. 31(6), 667–698 (2005). https://doi.org/10.1016/j.ijimpeng.2004.03.013

    Article  Google Scholar 

  49. T. Børvik, O.S. Hopperstad, M. Langseth, H. Jouhara, Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int. J. Impact Eng. 28(4), 413–464 (2003). https://doi.org/10.1016/S0734-743X(02)00072-6

    Article  Google Scholar 

  50. Y. Bai, T.P. Preben, Elastic-plastic behaviour of offshore steel structures under impact loads. Int. J. Impact Eng. 13(1), 99–115 (1993). https://doi.org/10.1016/0734-743X(93)90110-S

    Article  Google Scholar 

  51. T. de Sousa Antonino, P.B. Guimarães, R. de AraújoAlécio, Y.P. Yadava, Measurements of the Thermophysical Properties of the API 5L X80. Mater. Sci. Appl. 5, 617–627 (2014). https://doi.org/10.4236/msa.2014.58064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Fundamental Research Funds for the Central Universities (Grant No. B220203031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Zhang.

Ethics declarations

Conflict of interests

The authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, S. Plugging Analysis and Shear Model of Pressurized Pipeline Struck by Destructive Flat-Nosed Impactors. J Fail. Anal. and Preven. 23, 711–727 (2023). https://doi.org/10.1007/s11668-023-01600-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01600-3

Keywords

Navigation