Skip to main content
Log in

A Combined Preventive Maintenance Strategy for Bearings to Accomplish the Failure Prevention of Rotating Equipment

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This study presents a combined preventive maintenance strategy for bearings to accomplish the failure prevention of rotating equipment. The concepts of preventive maintenance and trend chart are introduced in the beginning. Next, as an illustration, this strategy installs four accelerometers at selected locations of the equipment to acquire vibration amplitude data periodically. Only if any one of amplitudes exceeds the corresponding prescribed warning value, the acquired time-domain signal then is sent to the vibration analyzer to establish the corresponding frequency spectrum by the Fast Fourier Transform method. Contrasting the frequency of the highest amplitude among the amplitudes of harmonic frequencies in the spectrum with the calculated defect frequencies of the bearings, the defective bearing can be accurately located. Consequently, the abnormality of the defective bearing is early detected such that failure of the rotating equipment is prevented by executing preventive maintenance. At the end, the defective bearing is taken out from the monitored equipment to verify this investigation. The reliability improvement of rotating equipment is illustrated as well. This study was performed in a real workshop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.D.T. O’Connor, Practical Reliability Engineering. (John Wiley, Chichester, 2002)

    Google Scholar 

  2. J.D. Patton, Preventive Maintenance. (Instrument Society of America, New York, 1983)

    Google Scholar 

  3. S.K. Yang, An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor. Reliab. Eng. Syst. Saf. 75(1), 103–111 (2002)

    Article  Google Scholar 

  4. S. Han, N. Mannan, D.C. Stein, K.R. Pattipati, G.M. Bollas, Classification and regression models of audio and vibration signals for machine state monitoring in precision machining systems. J. Manuf. Syst. 61, 45–53 (2021)

    Article  Google Scholar 

  5. B.K. Pavan Kumar, Y. Basavaraj, N. Keerthi Kumar, M.J. Sandeep, Vibration based condition monitoring of rotating part using spectrum analysis: a case study on milling machine. Mater. Today Proc. 49, 744–747 (2022)

    Article  Google Scholar 

  6. Y.H. Wang, L.Y. Zheng, Y.W. Wang, Event-driven tool condition monitoring methodology considering tool life prediction based on industrial internet. J. Manuf. Syst. 58, 205–222 (2021)

    Article  Google Scholar 

  7. B.X. Zhao, Q. Yuan, A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings. J. Manuf. Syst. 61, 450–460 (2021)

    Article  Google Scholar 

  8. H. Li, Z.M. Deng, N.A. Golilarz, C.G. Soares, Reliability analysis of the main drive system of a CNC machine tool including early failures. Reliab. Eng. Syst. Saf. 215, 107846 (2021)

    Article  Google Scholar 

  9. Y.Q. Lv, W.Q. Zhao, Z.Y. Zhao, W.D. Li, K.K.H. Ng, Vibration signal-based early fault prognosis: status quo and applications. Adv. Eng. Inform. 52, 101609 (2022)

    Article  Google Scholar 

  10. M. Rausand, K. Oien, The basic concept of failure analysis. Reliab. Eng. Syst. Saf. 53, 73–83 (1996)

    Article  Google Scholar 

  11. W.J. Wang, P.D. McFadden, Early detection of gear failure by vibration analysis—I. Calculation of the time-frequency distribution. Mech. Syst. Signal Process. 7(3), 193–203 (1993). https://doi.org/10.1006/mssp.1993.1008

    Article  Google Scholar 

  12. A. Baccigalupi, A. Bernieri, A. Pietrosanto, A digital-signal-processor-based measurement system for on-line fault detection. IEEE Trans. Instrum. Meas. 46(3), 731–736 (1997)

    Article  Google Scholar 

  13. S.K. Yang, A condition-based failure-prediction and processing-scheme for preventive maintenance. IEEE Trans. Reliab. 52(3), 373–383 (2003)

    Article  Google Scholar 

  14. H. Saruhan, S. Sardemir, A. Cicek, I. Uygur, Vibration analysis of rolling element bearings defects. J. Appl. Res. Technol. 12(3), 384–395 (2014)

    Article  Google Scholar 

  15. M. Farina, E. Osto, A. Perizzato, L. Piroddi, R. Scattolini, Fault detection and isolation of bearings in a drive reducer of a hot steel rolling mill. Control Eng. Pract. 39, 2081–2097 (2013)

    Google Scholar 

  16. N. Sawalhi, R. Randall, Gear parameter identification in a wind turbine gearbox using vibration signals. Mech. Syst. Signal Process. 42, 368–376 (2014)

    Article  Google Scholar 

  17. D.P. Jena, S.N. Panigrahi, R. Kumar, Multiple-teeth defect localization in geared systems using filtered acoustic spectrogram. Appl. Acoust. 74, 823–833 (2013)

    Article  Google Scholar 

  18. D. Petersen, C. Howard, N. Sawalhi, A. Moazen Ahmadi, S. Singh, Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects. Mech. Syst. Signal Process. 50–51, 139–160 (2015)

    Article  Google Scholar 

  19. W. He, Q. Miao, M. Azarian, M. Pecht, Health monitoring of cooling fan bearings based on wavelet filter. Mech. Syst. Signal Process. 64–65, 149–161 (2015)

    Article  Google Scholar 

  20. C. Cárcel, V. Jaramillo, D. Mba, J. Ottewill, Y. Cao, Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions. Mech. Syst. Signal Process. 66–67, 699–714 (2016)

    Article  Google Scholar 

  21. D.P. Jena, S. Panigrahi, Automatic gear and bearing fault localization using vibration and acoustic signals. Appl. Acoust. 98, 20–33 (2015)

    Article  Google Scholar 

  22. Y. Li, K. Ding, G. He, H. Lin, Vibration mechanisms of spur gear pair in healthy and fault states. Mech. Syst. Signal Process. 81, 183–201 (2016)

    Article  Google Scholar 

  23. C.H. Sun, W.Y. Chen, C.M. Chen, J. Chin. Soc. Mech. Eng. 39(1), 1–10 (2018)

    Google Scholar 

  24. E.G. Plazaa, P.J. Núñez Lópeza, E.M. Beamud González, Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining. J. Manuf. Process. 44, 145–157 (2019)

    Article  Google Scholar 

  25. K. Wegener, F. Bleicher, U. Heisel, H.W. Hoffmeisterd, H.C. Möhring, Noise and vibrations in machine tools. CIRP Ann. Manuf. Technol. 70, 611–633 (2021)

    Article  Google Scholar 

  26. D.S. Liu, M. Luo, G.U. Pelayo, D.O. Trejo, D.H. Zhang, Position-oriented process monitoring in milling of thin-walled parts. J. Manuf. Syst. 60, 360–372 (2021)

    Article  Google Scholar 

  27. Z.S. Liang, S.T. Wang, Y.L. Peng, X.Y. Mao, X. Yuan, A.D. Yang, L. Yin, The process correlation interaction construction of Digital Twin for dynamic characteristics of machine tool structures with multi-dimensional variables. J. Manuf. Syst. 63, 78–94 (2022)

    Article  Google Scholar 

  28. G.G. Barna, Automatic problem detection and documentation for a plasma etch reactor. IEEE Trans. Semicond. Manuf. 5(1), 56–59 (1992)

    Article  Google Scholar 

  29. S.K. Yang, T.S. Liu, A Petri net approach to early failure detection and isolation for preventive maintenance. Qual. Reliab. Eng. Int. 14(5), 319–330 (1998)

    Article  Google Scholar 

  30. A. Baccigalupi, A. Bernieri, A. Pietrosanto, IEEE Trans. Instrum. Meas. 46(3), 731–736 (1997)

    Article  Google Scholar 

  31. G.X. Chiu, SKF Frequency Spectrum Training Course Material. (Engineering Center for Solving Tailor Made Program of SKF, Taipei, 2014)

    Google Scholar 

  32. T.B. Xia, G. Shi, G.J. Si, S.C. Du, L.F. Xi, Energy-oriented joint optimization of machine maintenance and tool replacement in sustainable manufacturing. J. Manuf. Syst. 59, 261–271 (2021)

    Article  Google Scholar 

  33. S.K. Yang, T.S. Liu, Implementation of Petri nets using a field-programmable gate array. Qual. Reliab. Eng. Int. 16(2), 99–116 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Kuo Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SK., Chen, CM. & Chang, HL. A Combined Preventive Maintenance Strategy for Bearings to Accomplish the Failure Prevention of Rotating Equipment. J Fail. Anal. and Preven. 22, 1457–1467 (2022). https://doi.org/10.1007/s11668-022-01415-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01415-8

Keywords

Navigation