Skip to main content
Log in

Failure Analysis of the High Nitrogen Austenitic Stainless-Steel Boiler Tank Weldments

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The paper investigates the reason for the cracking and leaking of stainless-steel (SS) tanks used to store processed hot water in rice boiling and husking plants. A detailed analysis of tank specimen samples using radiography, optical metallography, scanning electron microscopy, EDAX reveals that stress corrosion cracking (SCC) is the prime reason for the failure. The presence of favorable microstructure, environment and stress promoted the nucleation and propagation of SCC in the tank weldment. The evolution of the microstructure in the selected stainless grade was studied and discussed using Scheffler–Delong diagram. The formation of martensite in low nickel, high nitrogen austenitic stainless steel was observed to significantly influence the mechanical properties and promote SCC. The decreased pitting corrosion resistance of the material compared to SS 316 alloy was an important factor in the initiation of pits which acted as nucleation sites for SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, A.F. Padilha, A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater. Res. 10(4), 453–460 (2007). https://doi.org/10.1590/S1516-14392007000400021

    Article  CAS  Google Scholar 

  2. M. Talha, C.K. Behera, O.P. Sinha, A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater. Sci. Eng. C. 33(7), 3563–3575 (2013). https://doi.org/10.1016/j.msec.2013.06.002

    Article  CAS  Google Scholar 

  3. H. Baba, T. Kodama, Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels. Corros. Sci. 44(10), 2393–2407 (2002). https://doi.org/10.1016/S0010-938X(02)00040-9

    Article  CAS  Google Scholar 

  4. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, E.N. Pugh, The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel. Metall. Trans. A. 10(7), 935–941 (1979). https://doi.org/10.1007/BF02658313

    Article  Google Scholar 

  5. P.C. Pistorius. Low-nickel austenitic stainless steels: metallurgical constraints, pp. 911–917 (2010).

  6. E. Kalácska, B. Varbai, J. Ginsztler, K. Májlinger, TIG and MIG welding of high strength Cr-Mn and Cr-Ni alloyed austenitic stainless steel combinations. IOP Conf. Ser. Mater. Sci. Eng. 426, 012021 (2018). https://doi.org/10.1088/1757-899X/426/1/012021

    Article  Google Scholar 

  7. Z. Liu et al., Gas metal arc welding of high nitrogen stainless steel with Ar–N2–O2 ternary shielding gas. Def. Technol. (2020). https://doi.org/10.1016/j.dt.2020.05.021

    Article  Google Scholar 

  8. P.A.A. Khan, T. Debroy, Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel. Metall. Trans. B. 15(4), 641–644 (1984). https://doi.org/10.1007/BF02657284

    Article  CAS  Google Scholar 

  9. W. Chuaiphan, L. Srijaroenpramong, Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets. J. Mater. Process. Technol. 214(2), 402–408 (2014). https://doi.org/10.1016/j.jmatprotec.2013.09.025

    Article  CAS  Google Scholar 

  10. E.A. Krivonosova, A review of stress corrosion cracking of welded stainless steels. OALib. 05(05), 1–41 (2018). https://doi.org/10.4236/oalib.1104568

    Article  Google Scholar 

  11. S.M. Elsariti, Behaviour of stress corrosion cracking of austenitic stainless steels in sodium chloride solutions. Procedia Eng. 53, 650–654 (2013). https://doi.org/10.1016/j.proeng.2013.02.084

    Article  CAS  Google Scholar 

  12. A.I. Karayan, H. Castaneda, Weld decay failure of a UNS S31603 stainless steel storage tank. Eng. Fail. Anal. 44, 351–362 (2014). https://doi.org/10.1016/j.engfailanal.2014.05.008

    Article  CAS  Google Scholar 

  13. A.D. Schino, J.M. Kenny, Effect of grain size on the corrosion resistance of a high nitrogen-low nickel austenitic stainless steel, p. 3

  14. C. Garcia, F. Martin, P. de Tiedra, Y. Blanco, M. Lopez, Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell. Corros. Sci. 50(4), 1184–1194 (2008). https://doi.org/10.1016/j.corsci.2007.11.028

    Article  CAS  Google Scholar 

  15. B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim. Acta. 50(6), 1391–1403 (2005). https://doi.org/10.1016/j.electacta.2004.08.036

    Article  CAS  Google Scholar 

  16. F. Bottoli, M.S. Jellesen, T.L. Christiansen, G. Winther, M.A.J. Somers, High temperature solution-nitriding and low-temperature nitriding of AISI 316: effect on pitting potential and crevice corrosion performance. Appl. Surf. Sci. 431, 24–31 (2018). https://doi.org/10.1016/j.apsusc.2017.06.094

    Article  CAS  Google Scholar 

  17. P. Guiraldenq, O. Hardouin Duparc, The genesis of the Schaeffler diagram in the history of stainless steel. Metall. Res. Technol. 114(6), 613 (2017). https://doi.org/10.1051/metal/2017059

    Article  CAS  Google Scholar 

  18. R. Saluja, K.M. Moeed, The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304l and 316l stainless steel welds. Int. J. Eng. Sci. Technol. 4(5), 2206–2212 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijeesh Vijayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, V., Ravichandran, G., Rao, M. et al. Failure Analysis of the High Nitrogen Austenitic Stainless-Steel Boiler Tank Weldments. J Fail. Anal. and Preven. 21, 976–982 (2021). https://doi.org/10.1007/s11668-021-01142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01142-6

Keywords

Navigation