Skip to main content
Log in

High-Temperature Corrosion Behaviour of CNT-reinforced Zirconium Yttrium Coatings on Boiler Tube Steel in Coal-Fired Boiler of Thermal Power Plant

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Corrosion behaviour of carbon nanotubes (CNT)-reinforced zirconium yttrium coatings at high temperature under cyclic thermal loading has been investigated in actual coal-fired boiler environment of thermal power plant. The amount of CNT was varied from 0.5 to 6 wt.%, and the coating was developed by the plasma spray technique. The comparative effects of variation in CNT content on hot corrosion behaviour were studied by weight change measurements. The corroded products were then analysed with XRD, FE-SEM with EDAX and X-sectional analysis techniques. The results revealed that the variation in CNT percentile enhances the hot corrosion resistance of boiler steel in actual boiler environment at elevated temperature. The reinforced coatings showed the lower weight gain measurements with the formation of protective scale of oxides during the experiment. Corrosion rate was observed to be reduced with the increased content of CNT in the coating composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science (80-) 296(5566), 280–284 (2002)

    Article  CAS  Google Scholar 

  2. S. Rao, L. Frederick, A. McDonald, Resistance of nanostructured environmental barrier coatings to the movement of molten salts. J. Therm. Spray Technol. 21(5), 887–899 (2012)

    Article  CAS  Google Scholar 

  3. K. Goyal, H. Singh, R. Bhatia, Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating. J. Aust. Ceram. Soc. 55(2), 315–322 (2019)

    Article  CAS  Google Scholar 

  4. N.S. Jacobson, J.L. Smialek, Hot corrosion of sintered α-SiC at 1000 °C. J. Am. Ceram. Soc. 68(8), 432–439 (1985)

    Article  CAS  Google Scholar 

  5. R.L. Jones, Some aspects of the hot corrosion of thermal barrier coatings. J. Therm. Spray Technol. 6(1), 77–84 (1997)

    Article  CAS  Google Scholar 

  6. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings (Wiley, New York, 2008)

    Book  Google Scholar 

  7. G. Singh, K. Goyal, R. Bhatia, Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850 C in simulated boiler environment. Iran. J. Sci. Technol. Trans. Mech. Eng. 42(2), 149–159 (2018)

    Article  Google Scholar 

  8. K. Goyal, H. Singh, R. Bhatia, Hot-corrosion behavior of Cr 2 O 3-CNT-coated ASTM-SA213-T22 steel in a molten salt environment at 700 °C. Int. J. Miner. Metall. Mater. 26(3), 337–344 (2019)

    Article  CAS  Google Scholar 

  9. D. Ghosh, S. Das, H. Roy, S.K. Mitra, Oxidation behaviour of nanostructured YSZ plasma sprayed coated Inconel alloy. Surf. Eng. 34(1), 22–29 (2018)

    Article  CAS  Google Scholar 

  10. D. Tianshun, Z. Xiukai, L. Guolu, L. Li, W. Ran, Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting Microstructure and corrosive wear resistance of plasma sprayed Ni- based coatings after TIG remelting. Mater. Res. Express 5, 026411 (2018)

    Article  Google Scholar 

  11. F. Wang, S. Geng, High temperature oxidation and corrosion resistant nanocrystalline coatings. Surf. Eng. 19(1), 32–36 (2003)

    Article  CAS  Google Scholar 

  12. R. Martin, M. Vick, R.K. Enneti, S.V. Atre, Sintering characteristics of a powder injection molded ceria-stabilized zirconia–mullite composite. Mater. Manuf. Process. 30(5), 616–623 (2015)

    Article  CAS  Google Scholar 

  13. S.L. Suib, A review of nanoceramic materials for use in ceramic matrix composites, in Sol–Gel Based Nanoceramic Materials: Preparation, Properties and Applications, ed. by A.K. Mishra (Springer, Berlin, 2017), pp. 185–230

    Chapter  Google Scholar 

  14. M. Dussing, H. Yang, T.D. Topping, E.J. Lavernia, K. Ma, and J.M. Schoenung, Microstructure and mechanical behavior of Cryomilled Al–Mg composites reinforced with nanometric yttria partially stabilized zirconia, in TMS Annual Meeting & Exhibition (2018), pp. 71–86

  15. M.F. Gong, F. Mei, S.R. Qiao, S.H. Wu, B.A. Lyashenko, Determination of strength properties for yttria stabilised zirconia coatings. Surf. Eng. 31(4), 308–315 (2015)

    Article  Google Scholar 

  16. P. Hvizdos, V. Puchy, A. Duszova, J. Dusz, Carbon nanofibers reinforced ceramic matrix composites. Nanofibers Prod. Prop. Funct. Appl. (2011). https://doi.org/10.5772/23445

    Article  Google Scholar 

  17. M.H. Habibi, S.M. Guo, The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide. Mater. Corros. 66(3), 270–277 (2015)

    Article  CAS  Google Scholar 

  18. J.G. Thakare, C. Pandey, R.S. Mulik, M.M. Mahapatra, Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 44(6), 6980–6989 (2018). https://doi.org/10.1016/j.ceramint.2018.01.131

    Article  CAS  Google Scholar 

  19. K. Balani, S.P. Harimkar, A. Keshri, Y. Chen, N.B. Dahotre, A. Agarwal, Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating. Acta Mater. (2008). https://doi.org/10.1016/j.actamat.2008.08.020

    Article  Google Scholar 

  20. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi, Corrosion behavior of carbon nanotubes–Ni composite coating. Surf. Coat. Technol. 191(2–3), 351–356 (2005)

    Article  CAS  Google Scholar 

  21. B.M. Praveen, T.V. Venkatesha, Y.A. Naik, K. Prashantha, Corrosion studies of carbon nanotubes–Zn composite coating. Surf. Coat. Technol. 201(12), 5836–5842 (2007)

    Article  CAS  Google Scholar 

  22. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon N. Y. 41(2), 215–222 (2003)

    Article  CAS  Google Scholar 

  23. A.K. Keshri, V. Singh, J. Huang, S. Seal, W. Choi, A. Agarwal, Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating. Surf. Coat. Technol. 204(11), 1847–1855 (2010)

    Article  CAS  Google Scholar 

  24. K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, A. Agarwal, Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater. 3(6), 944–951 (2007)

    Article  CAS  Google Scholar 

  25. N. Bala, H. Singh, S. Prakash, High temperature corrosion behavior of cold spray Ni-20Cr coating on boiler steel in molten salt environment at 900 C. J. Therm. Spray Technol. 19(1–2), 110–118 (2010)

    Article  CAS  Google Scholar 

  26. A. Goyal, R. Singh, G. Singh, Study of high-temperature corrosion behavior of D-gun spray coatings on ASTM-SA213, T-11 steel in molten salt environment. Mater. Today Proc. 4(2), 142–151 (2017). https://doi.org/10.1016/j.matpr.2017.01.007

    Article  Google Scholar 

  27. K. Goyal, R. Goyal, Improving hot corrosion resistance of Cr3C2–20NiCr coatings with CNT reinforcements. Surf. Eng. (2019). https://doi.org/10.1080/02670844.2019.1662645

    Article  Google Scholar 

  28. V.P.S. Sidhu, K. Goyal, R. Goyal, An investigation of corrosion resistance of HVOF coated ASME SA213 T91 boiler steel in an actual boiler environment. Anti-Corros. Methods Mater. 64(5), 499–507 (2017). https://doi.org/10.1108/ACMM-08-2016-1703

    Article  CAS  Google Scholar 

  29. R. Bhatia, H.S. Sidhu, B.S. Sidhu, High temperature behavior of Cr3C2-NiCr coatings in the actual coal-fired boiler environment. Metall. Mater. Trans. E. (2015). https://doi.org/10.1007/s40553-015-0045-x

    Article  Google Scholar 

  30. A. Goyal, R. Singh, and G. Singh, Study of high-temperature corrosion behavior of D-gun spray coatings on ASTM-SA213, T-11 steel in molten salt environment, in Materials Today: Proceedings (2017). https://doi.org/10.1016/j.matpr.2017.01.007

  31. K. Goyal, H. Singh, R. Bhatia, Behaviour of carbon nanotubes-Cr2O3 thermal barrier coatings in actual boiler. Surf. Eng. (2019). https://doi.org/10.1080/02670844.2019.1584966

    Article  Google Scholar 

  32. S.K. Singhal, R. Pasricha, M. Jangra, R. Chahal, S. Teotia, R.B. Mathur, Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2011.10.013

    Article  Google Scholar 

  33. I. Ahmad et al., Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos. Sci. Technol. (2010). https://doi.org/10.1016/j.compscitech.2010.03.007

    Article  Google Scholar 

  34. N. Van Tuan, Study on corrosion resistance of carbon nanotubes reinforced Al2O3 coating. Vietnam J. Sci. Technol. 55(5B), 171 (2017)

    Article  Google Scholar 

  35. J.G. Thakare, R.S. Mulik, M.M. Mahapatra, Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating. Ceram. Int. 44(1), 438–451 (2018)

    Article  CAS  Google Scholar 

  36. G. Wen, Z.X. Guo, C.K.L. Davies, Microstructural characterisation of electroless-nickel coatings on zirconia powder. Scr. Mater. 43(4), 307–311 (2000)

    Article  CAS  Google Scholar 

  37. S. Ariharan, A. Nisar, N. Balaji, S.T. Aruna, K. Balani, Carbon nanotubes stabilize high temperature phase and toughen Al2O3-based thermal barrier coatings. Compos. Part B Eng. 124, 76–87 (2017)

    Article  CAS  Google Scholar 

  38. D. Lim, D. You, H. Choi, S. Lim, H. Jang, Effect of CNT distribution on tribological behavior of alumina—CNT composites. Wear 259, 539–544 (2005). https://doi.org/10.1016/j.wear.2005.02.031

    Article  CAS  Google Scholar 

  39. K. Goyal, “Mechanical and microstructural properties of carbon nanotubes reinforced chromium oxide coated boiler steel. World J. Eng. 4(November 2017), 429–439 (2018). https://doi.org/10.1108/wje-10-2017-0315

    Article  CAS  Google Scholar 

  40. K. Goyal, H. Singh, and R. Bhatia, Effect of carbon nanotubes on properties of ceramics based composite coatings, vol. 26 (2018), pp. 53–66. http://doi.org/10.4028/www.scientific.net/AEF.26.53

  41. R. Goyal, B.S. Sidhu, and V. Chawla, Improving the high-temperature oxidation resistance of ASME-SA213-T11 boiler tube steel by plasma spraying with CNT-reinforced alumina coatings. Anti-Corros. Methods Mater. 65(2), 217–223 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Bhatia, R. & Singh, H. High-Temperature Corrosion Behaviour of CNT-reinforced Zirconium Yttrium Coatings on Boiler Tube Steel in Coal-Fired Boiler of Thermal Power Plant. J Fail. Anal. and Preven. 20, 2029–2039 (2020). https://doi.org/10.1007/s11668-020-01015-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01015-4

Keywords

Navigation