Skip to main content
Log in

Metallurgical Failure Analysis of a High-Strength-Steel Drag Chain Conveyor Link

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

A detailed failure analysis was carried out on a broken chain link made from high-strength manganese steel which failed while in service at a cement factory. Metallographic and microhardness testing revealed the presence of a dual structure within the failed link: a softer low-precipitate chill zone at the outer periphery and a hard and brittle inner structure typified by columnar grain structure and high volume of both inter- and intragranular carbide precipitation. The present failure is believed to have initiated at the outer surface by a contact rolling fatigue action within the softer structure and further augmented by the presence of shrinkage porosity and the inner brittle structure. The development of the observed failure is discussed in terms of microstructure and mechanical properties of the material of manufacture, and practical recommendations are presented at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M. Oezel, T. Janitzky, P. Beiss, C. Broeckmann, Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6. Wear 430–431, 272–279 (2019)

    Article  Google Scholar 

  2. S. Dhar, H.K. Danielsen, S. Fæster, C.J. Rasmussen, D. Juul Jensen, 2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing. Wear 436–437, 202959 (2019)

    Article  Google Scholar 

  3. V.L. Volodin, L.B. Zuev, T.V. Volodin, V.E. Gromov, Structure, strength, and wear resistance of hadfield steel subjected to surface magnetic-pulse treatment. Steel Transl. 39(8), 629–632 (2009)

    Article  Google Scholar 

  4. A.A. Gulyaev, Y. Tyapkin, V.A. Golikov, V.S. Sharinova, The fine structure of hadfield steel. Met. Sci. Heat Treat. 27(6), 411–415 (1985)

    Article  Google Scholar 

  5. L. Niu, Y. Xu, H. Wu, Microstructure and mechanical properties of high-Cr cast iron bars reinforced Hadfield steel matrix composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25(3), 464–468 (2010). https://doi.org/10.1007/s11595-010-0024-0

    Article  CAS  Google Scholar 

  6. M. Sabzi, S.M. Far, S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process. Int. J. Miner. Metall. Mater. 25(12), 1431 (2018). https://doi.org/10.1007/s12613-018-1697-1

    Article  CAS  Google Scholar 

  7. S. Dhara, H.K. Danielsen, S. Fæster, C. Rasmussen, Y. Zhang, D.J. Jensen, Crack formation within a Hadfield manganese steel crossing nose. Wear 438–439, 1–9 (2019). https://doi.org/10.1016/j.wear.2019.203049

    Article  CAS  Google Scholar 

  8. D.K. Subramanyam, Austenitic Manganese Steels, in ASM Handbook Volume 1; Properties and Selection: Irons; Steels and High-Performance Alloys, 10th Ed., eds. by S.R. Lampman, T.B. Zorc (1993), pp. 1951–2003

  9. C.-p. Liu, P.-t. Liu, J.-z. Pan, C.-h. Chen, R.-m. Ren, Effect of pre-wear on the rolling contact fatigue property of D2 wheel steel. Wear 442–443, 203154 (2020)

    Article  Google Scholar 

  10. B. Allison, A. Pandkar, Critical factors for determining a first estimate of fatigue limit of bearing steels under rolling contact fatigue. Int. J. Fatigue 117, 396–406 (2018)

    Article  Google Scholar 

  11. A. Holmberg, M. Andersson, Å.K. Rudolphi, Rolling fatigue life of PM steel with different porosity and surface finish. Wear 426–427, 454–461 (2019)

    Article  Google Scholar 

  12. M. Ueda, K. Matsuda, Effects of carbon content and hardness on rolling contact fatigue resistance in heavily loaded pearlitic rail steels. Wear 444–445, 203120 (2020)

    Article  Google Scholar 

  13. D. Zeng, X. Tian, W. Liu, L. Liantao, J. Zhang, Y. Gong, Investigation on rolling contact fatigue of railway wheel steel with surface defect. Wear 446–447, 203207 (2020)

    Article  Google Scholar 

  14. V.K. Sharma, Roller contact fatigue study of austempered ductile iron. J. Heat. Treat. 3(4), 326–334 (1984)

    Article  Google Scholar 

  15. D. Scott, Rolling contact fatigue, in Treatise on Materials Science and Technology: Wear, ed. by D. Scott (Elsevier, Amsterdam, 1979), pp. 321–361

    Google Scholar 

  16. M. Taraf, E.H. Zahaf, O. Oussouaddi, A. Zeghloul, Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel. Tribol. Int. 43, 585–593 (2010)

    Article  CAS  Google Scholar 

  17. K. Tanaka, T. Mura, A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97–103 (1981)

    Article  Google Scholar 

  18. H.J. Böhmer, Wälzverschleiß und -ermüdung von Bauteilen und Maßnahmen zu ihrer Einschränkung. Mat.-wiss. u. Werkstofftech. 29, 697–713 (1998). https://doi.org/10.1002/mawe.19980291203

    Article  Google Scholar 

  19. H. Winter, H.R. Rösch, Einfluss des Schlupfes auf die Wälzfestigkeit von Rollen. Antriebstechnik 14(9), 505–513 (1975)

    Google Scholar 

  20. M. Sabzia, S.M. Dezfuli, Post weld heat treatment of hypereutectoid hadfield steel: characterization and control of microstructure, phase equilibrium, mechanical properties and fracture mode of welding joint. J. Manuf. Process. 34, 313–328 (2018). https://doi.org/10.1016/j.jmapro.2018.06.009

    Article  Google Scholar 

  21. J.W. Ringsberg, M. Loo-Morrey, B.L. Josefson, Prediction of fatigue crack initiation for rolling contact fatigue. Int. J. Fatigue 22, 205–215 (2000)

    Article  CAS  Google Scholar 

  22. H.D. Grohmann, K. Hempelmann, A. Grob-Thebing, A new type of RCF, experimental investigations and theoretical modeling. Wear 253, 67–74 (2002)

    Article  CAS  Google Scholar 

  23. B. Lv, M. Zhang, F.C. Zhang, C.L. Zheng, X.Y. Feng, L.H. Qian, X.B. Qin, Micro-mechanism of rolling contact fatigue in Hadfield steel crossing. Int. J. Fatigue 44, 273–278 (2012). https://doi.org/10.1016/j.ijfatigue.2012.04.010

    Article  CAS  Google Scholar 

  24. J. Liu, A dynamic modelling method of a rotor-roller bearing housing system with a localized fault including the additional excitation zone. J. Sound Vib. 469, 115144 (2020)

    Article  Google Scholar 

  25. R. Harzallah, A. Mouftiez, E. Felder, S. Hariri, J.P. Maujean, Rolling contact fatigue of Hadfield steel X120Mn12. Wear 269, 647–654 (2010). https://doi.org/10.1016/j.wear.2010.07.001

    Article  CAS  Google Scholar 

  26. J. Kang, F.C. Zhang, X.Y. Long, B. Lv, Cyclic deformation and fatigue behaviors of Hadfield manganese steel. Mater. Sci. Eng. A591, 59–68 (2014). https://doi.org/10.1016/j.msea.2013.10.072

    Article  CAS  Google Scholar 

  27. B. Garmeh, M. Kasiri-Asgarani, K. Amini, H. Ghayour, Analysis of Hadfield Scrap Shredder Hammer Fracture and replacing it with Carbide-free Nano-Bainitic Steel. Eng. Fail. Anal. (2019). https://doi.org/10.1016/j.engfailanal.2019.104230

    Article  Google Scholar 

  28. W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd edn. (Wiley, New York, 2008)

    Google Scholar 

  29. M. Ciavarella, P. Decuzzi, The state of stress induced by the plane frictionless cylindrical contact. I. The case of elastic similarity. Int. J. Solids Struct. 38, 4507–4523 (2001)

    Article  Google Scholar 

  30. M. Ciavarella, P. Decuzzi, The state of stress induced by the plane frictionless cylindrical contact. II. The case of elastic similarity. Int. J. Solids Struct. 38, 4525–4533 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The experimental part of this study was carried out at the laboratories of ACUREN Group INC., Mississauga, Ontario, Canada, where the first author held the position of a senior metallurgical failure analyst. The help and support of ACUREN technical and managerial staff is highly appreciated. This work was originally conducted for Holcim-Canada, Mississauga, L5J 1K1, ON, Canada. The permission granted by Holcim-Canada to publish this work is highly appreciated. Provision of bucket elevator images by Infinity for Cement Equipment and The Arab Cement Co. is mostly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Kareem Abdul Jawwad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Jawwad, A.K. Metallurgical Failure Analysis of a High-Strength-Steel Drag Chain Conveyor Link. J Fail. Anal. and Preven. 20, 647–656 (2020). https://doi.org/10.1007/s11668-020-00879-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00879-w

Keywords

Navigation