Skip to main content
Log in

Comparative Assessment on the Behavior of HVOF Sprayed Ni-Based Alloy Coatings on SA213-T22 Boiler Tube Steel in Actual Biomass Fired Boiler Environment

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Corrosion occurrence issue at high temperature has often come across in biomass boilers for the reason that burnt fuels mainly comprise of alkali, chlorine and other molten salts. Due to this, material depletion, leakages and unexpected shutdown of plants have been reported. Utilizing thermal spray for protective coatings is one of the striking solutions for obviating this issue. Commercial Inconel 625 and Inconel 718 powders were deposited on SA213-T22 boiler steel by means of a high velocity oxy-fuel (HVOF) spraying technique in the present investigation. In order to assess the performance of coating in actual environment, bare and coated samples were subjected to biomass-fired boiler for 15 cycles. The erosion-corrosion kinetics was determined using thickness loss data. The as-sprayed and eroded-corroded specimens were examined using different characterization techniques. XRD and SEM/EDS were utilized for examining the phases and surface morphologies of powder, coating and eroded-corroded samples. The HVOF sprayed coated steel outperformed than the bare steel in actual boiler environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Eklund, J. Phother, E. Sadeghi, S. Joshi, and J. Liske, High-Temperature Corrosion of HVAF-Sprayed Ni-Based Coatings for Boiler Applications, Oxid. Met., 2019, 91(5), p 729-747.

    Article  CAS  Google Scholar 

  2. H.P. Nielsen, F.J. Frandsen, K. Dam-Johansen, and L.L. Baxter, The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers, Prog. Energy Combust. Sci., 2000, 26(3), p 283-298.

    Article  CAS  Google Scholar 

  3. K.O. Davidsson, L.E. Åmand, B. Leckner, B. Kovacevik, M. Svane, M. Hagström, J.B. Pettersson, J. Pettersson, H. Asteman, J.E. Svensson, and L.G. Johansson, Potassium, Chlorine, and Sulfur in Ash, Particles, Deposits, and Corrosion During Wood Combustion in a Circulating Fluidized-Bed Boiler, Energy Fuels, 2007, 21(1), p 71-81.

    Article  CAS  Google Scholar 

  4. H.P. Michelsen, F. Frandsen, K. Dam-Johansen, and O.H. Larsen, Deposition and High Temperature Corrosion in a 10 MW Straw Fired Boiler, Fuel Process. Technol., 1998, 54(1-3), p 95-108.

    Article  CAS  Google Scholar 

  5. E. Sadeghi and S. Joshi, Chlorine-Induced High-Temperature Corrosion and Erosion-Corrosion of HVAF and HVOF-Sprayed Amorphous Fe-Based Coatings, Surf. Coat. Technol., 2019, 371, p 20-35.

    Article  CAS  Google Scholar 

  6. D. Mudgal, S. Singh, and S. Prakash, Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers, Int. J. Corros., 2014, 2014, p 1-14.

    Article  Google Scholar 

  7. C. Berlanga and J.A. Ruiz, Study of corrosion in a biomass boiler, J. Chem., 2013, 2013, p 1-8.

    Article  Google Scholar 

  8. K.G. Field, M.A. Snead, Y. Yamamoto, and K.A. Terrani, Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications. Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States), 2018.

  9. S. Chen and L. Rong, Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel, J. Nucl. Mater., 2015, 459, p 13-19.

    Article  CAS  Google Scholar 

  10. L. Song, E. Guo, L. Wang, and D. Liu, Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron, Metals, 2015, 5(1), p 150-161.

    Article  Google Scholar 

  11. S. Paul and M.D.F. Harvey, Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications, J. Therm. Spray Technol., 2013, 22(2), p 316-327.

    Article  CAS  Google Scholar 

  12. N. Bala, H. Singh, and S. Prakash, High Temperature Corrosion Behavior of Cold Spray Ni-20Cr Coating on Boiler Steel in Molten Salt Environment at 900 C, J. Therm. Spray Technol., 2010, 19(1), p 110-118.

    Article  CAS  Google Scholar 

  13. A.S. Walia, S.S. Aulakh, and G. Kaushal, Some Studies on D-Gun Sprayed ASTM SAE 213 T22 Steel for High Temperature Applications, Asian Rev. Mech. Eng, 2013, 2(2), p 75-78.

    Google Scholar 

  14. N. Bala, H. Singh, S. Prakash, and J. Karthikeyan, Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment, J. Therm. Spray Technol., 2012, 21(1), p 144-158.

    Article  CAS  Google Scholar 

  15. J.R. Davis (ed.) Handbook of Thermal Spray Technology. ASM international (2004).

  16. A. Silvello, P. Cavaliere, S. Yin, R. Lupoi, I. Garcia Cano, and S. Dosta, Microstructural, Mechanical and Wear Behavior of HVOF and Cold-Sprayed High-Entropy Alloys (HEAs) Coatings, J. Therm. Spray Technol., 2022, 31(4), p 1184-1206.

    Article  CAS  Google Scholar 

  17. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications, Mater. Sci., 2005, 41(6), p 805-823.

    Article  CAS  Google Scholar 

  18. S. Matthews, M. Hyland, and B. James, Long-Term Carbide Development in High-Velocity Oxygen Fuel/High-Velocity Air Fuel Cr3C2-NiCr Coatings Heat Treated at 900 C, J. Therm. Spray Technol., 2004, 13(4), p 526-536.

    Article  CAS  Google Scholar 

  19. J.M. Guilemany, N. Espallargas, P.H. Suegama, and A.V. Benedetti, Comparative Study of Cr3C2-NiCr Coatings Obtained by HVOF and Hard Chromium Coatings, Corros. Sci., 2006, 48(10), p 2998-3013.

    Article  CAS  Google Scholar 

  20. H.S. Sidhu, B.S. Sidhu, and S. Prakash, The Role of HVOF Coatings in Improving Hot Corrosion Resistance of ASTM-SA210 GrA1 Steel in the Presence of Na2SO4-V2O5 Salt Deposits, Surf. Coat. Technol., 2006, 200(18-19), p 5386-5394.

    Article  CAS  Google Scholar 

  21. M. Kaur, H. Singh, and S. Prakash, High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating, Metal. Mater. Trans. A, 2012, 43(8), p 2979-2993.

    Article  CAS  Google Scholar 

  22. R. Verma and G. Kaushal, Corrosion Performance of HVOF-Deposited Ni-Based Coatings in Simulated Biomass Fired Boiler Environment at 700 °C, J. Therm. Spray Technol., 2022, 31(7), p 2191-2206.

    Article  CAS  Google Scholar 

  23. T.Y. Yung, T.C. Chen, K.C. Tsai, W.F. Lu, J.Y. Huang, and T.Y. Liu, Thermal Spray Coatings of Al, ZnAl and Inconel 625 Alloys on SS304L for Anti-saline Corrosion, Coatings, 2019, 9(1), p 32.

    Article  Google Scholar 

  24. L. Wei, S. Wang, G. Liu, W. Hao, K. Liang, X. Yang, and W. Diao, Corrosion Behavior of High-Cr-Ni Materials in Biomass Incineration Atmospheres, ACS Omega, 2022, 7(25), p 21546-21553.

    Article  CAS  Google Scholar 

  25. S. Yoneda, S. Hayashi, Y. Miyakoshi, T. Kogin, E. Ishikawa, and M. Noguchi, Erosion–Corrosion Behavior of Ni-20Cr-4Fe and Ni-20Cr-4Fe-7Mo Under Fluidized-Bed Biomass Boiler Conditions, Corros. Sci., 2022, 205, p 110472.

    Article  CAS  Google Scholar 

  26. D. Zhang, S.J. Harris, and D.G. McCartney, Microstructure Formation and Corrosion Behaviour in HVOF-Sprayed Inconel 625 Coatings, Mater. Sci. Eng. A, 2003, 344(1-2), p 45-56.

    Article  Google Scholar 

  27. O.P. Oladijo, V. Luzin, N.B. Maledi, K. Setswalo, T.P. Ntsoane, and H. Abe, Residual Stress and Wear Resistance of HVOF Inconel 625 Coating on SS304 Steel Substrate, J. Therm. Spray Technol., 2020, 29(6), p 1382-1395.

    Article  CAS  Google Scholar 

  28. H. Edris, D.G. McCartney, and A.J. Sturgeon, Microstructural Characterization of High Velocity Oxy-Fuel Sprayed Coatings of Inconel 625, J. Mater. Sci., 1997, 32(4), p 863-872.

    Article  CAS  Google Scholar 

  29. H. Vasudev, H. Singh, L. Thakur, and J.S. Grewal, Investigation on Microstructural and Mechanical Properties of HVOF Sprayed Inconel-718 Coatings on Grey Cast Iron, Int. J. Sci. Res. Sci. Technol., 2018, 4(2), p 33-37.

    Google Scholar 

  30. T.C. Chen, C.C. Chou, T.Y. Yung, R.F. Cai, J.Y. Huang, and Y.C. Yang, A comparative Study on the Tribological Behavior of Various Thermally Sprayed Inconel 625 Coatings in a Saline Solution and Deionized Water, Surf. Coat. Technol., 2020, 385, p 125442.

    Article  CAS  Google Scholar 

  31. A.A. Boudi, M.S.J. Hashmi, and B.S. Yilbas, HVOF Coating of Inconel 625 onto Stainless and Carbon Steel Surfaces: Corrosion and Bond Testing, J. Mater. Process. Technol., 2004, 155, p 2051-2055.

    Article  Google Scholar 

  32. H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, and B.S. Yilbas, The Erosion–Corrosion Behaviour of High Velocity Oxy-Fuel (HVOF) Thermally Sprayed Inconel-625 Coatings on Different Metallic Surfaces, Surf. Coat. Technol., 2006, 200(20-21), p 5782-5788.

    Article  CAS  Google Scholar 

  33. N. Ahmed, M.S. Bakare, D.G. McCartney, and K.T. Voisey, The Effects of Microstructural Features on the Performance Gap in Corrosion Resistance Between Bulk and HVOF Sprayed Inconel 625, Surf. Coat. Technol., 2010, 204(14), p 2294-2301.

    Article  CAS  Google Scholar 

  34. O.P. Oladijo, V. Luzin, and T.P. Ntsoane, Thermally Sprayed Inconel 625 Coating on 304 Stainless Steel: A Neutron Diffraction Stress Analysis, Procedia Manuf., 2019, 35, p 1234-1239.

    Article  Google Scholar 

  35. J.R. Nicholls, Designing Oxidation-Resistant Coatings, JoM, 2000, 52(1), p 28-35.

    Article  CAS  Google Scholar 

  36. H.J. Grabke, E. Reese, and M. Spiegel, The Effects of Chlorides, Hydrogen Chloride, and Sulfur Dioxide in the Oxidation of Steels Below Deposits, Corros. Sci., 1995, 37(7), p 1023-1043.

    Article  CAS  Google Scholar 

  37. P. Viklund, R. Pettersson, A. Hjörnhede, P. Henderson, and P. Sjövall, Effect of Sulphur Containing Additive on Initial Corrosion of Superheater Tubes in Waste Fired Boiler, Corros. Eng. Sci. Technol., 2009, 44(3), p 234-240.

    Article  CAS  Google Scholar 

  38. E. Reese, E.M. Müller-Lorenz, and H.J. Grabke, Investigation of the Transient State of Oxidation-Chloridation, Le J. Phys. IV, 1993, 3(C9), p C9-133.

    Google Scholar 

  39. A. Zahs, M. Spiegel, and H. Grabke, The Influence of Alloying Elements on the Chlorine-Induced High Temperature Corrosion of Fe-Cr Alloys in Oxidizing Atmospheres, Mater. Corros., 1999, 50(10), p 561-578.

    Article  CAS  Google Scholar 

  40. J.M. Guilemany, M. Torrell, and J.R. Miguel, Study of the HVOF Ni-Based Coatings‘ Corrosion Resistance Applied on Municipal Solid-Waste Incinerators, J. Therm. Spray Technol., 2008, 17(2), p 254-262.

    Article  CAS  Google Scholar 

  41. M. Oksa, J. Metsäjoki, and J. Kärki, Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-fired Boilers, J. Therm. Spray Technol., 2015, 24(1), p 194-205.

    CAS  Google Scholar 

  42. C. Fu, Y. Li, and Y.F. Wang, Microstructure and Corrosion Resistance of NiCr-Based Coatings in Simulated Coal-Fired Boiler Conditions, Oxid. Met., 2021, 95(1), p 45-63.

    Article  Google Scholar 

  43. N. Folkeson, J. Pettersson, C. Pettersson, L.G. Johansson, E. Skog, B.A. Andersson, S. Enestam, J. Tuiremo, A. Jonasson, B. Heikne, and J.E. Svensson, Fireside corrosion of stainless and low alloyed steels in a waste-fired CFB boiler; The effect of adding sulphur to the fuel. In Materials Science Forum (vol. 595, pp. 289-297). Trans Tech Publications Ltd.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on New and Emerging Markets in Thermal Spray. The issue was organized by Dr. Andrew Vackel, Sandia National Laboratories; Dr. John Koppes, TST Engineered Coating Solutions; Prof. Bertrand Jodoin, University of Ottawa; Dr. Dheepa Srinivasan, Pratt and Whitney; and Prof. Shrikant Joshi, University West.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Kaushal, G. & Bala, N. Comparative Assessment on the Behavior of HVOF Sprayed Ni-Based Alloy Coatings on SA213-T22 Boiler Tube Steel in Actual Biomass Fired Boiler Environment. J Therm Spray Tech 32, 918–935 (2023). https://doi.org/10.1007/s11666-023-01569-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01569-3

Keywords

Navigation