Skip to main content
Log in

Microstructure and Corrosion Behavior of Plasma-Sprayed Nanodiamond-Reinforced NiAl Nanocomposite Coating

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Zero-dimensional structure, unique mechanical properties and potential thermal and chemical stability of nanodiamond (ND) make it a wise choice for reinforcement in metal matrix composites. Current study reveals the corrosion resistance (CR) of ND (0-1 wt.%)-reinforced Nickel-Aluminum (NiAl) coatings fabricated using atmospheric plasma spraying. The phase examination and microstructure demonstration of the powders and coatings were carried out using various characterization techniques, such as x-ray diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy etc. Further, x-ray photoelectron spectroscopy reveals the retention of ~ 69% sp3 hybridized ND in the coating. The electrochemical tests in 3.5 wt.% NaCl solution reveals that 0.1 wt.% ND-reinforced NiAl coating demonstrated the best CR among all coatings, with a CR value of 0.16 mpy, which is ~ 5 times better than pristine NiAl coating. This improvement is ascribed to the minimization of defects in the coating after reinforcement and formation of stable passive film in the immersed situation. However, increasing the ND content masked its benefits and on contrary, resulted in increased CR due to predominantly acting micro-galvanic corrosion. Post corrosion characterizations approaches were made to validate the after corrosion results and have been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Ward, A. Gupta, S. Saraf, C. Zhang, T.S. Sakthivel, S. Barkam, A. Agarwal, and S. Seal, Functional NiAl-Graphene Oxide Composite as a Model Coating for Aerospace Component Repair, Carbon N. Y., 2016, 105, p 529-543.

    Article  CAS  Google Scholar 

  2. B. Mukherjee, R. Kumar, A. Islam, O.S.A. Rahman, and A.K. Keshri, Evaluation of Strength-Ductility Combination by in-Situ Tensile Testing of Graphene Nano Platelets Reinforced Shroud Plasma Sprayed Nickel-Aluminium Coating, J. Alloys Compd., 2018, 765, p 1082-1089. https://doi.org/10.1016/j.jallcom.2018.06.278

    Article  CAS  Google Scholar 

  3. E. Celik, I. Ozdemir, E. Avci, and Y. Tsunekawa, Corrosion Behaviour of Plasma Sprayed Coatings, Surf. Coat. Technol., 2005, 193(1-3), p 297-302.

    Article  CAS  Google Scholar 

  4. M.M. Javadi, H. Edris, and M. Salehi, Plasma Sprayed NiAl Intermetallic Coating Produced with Mechanically Alloyed Powder, J. Mater. Sci. Technol., 2011, 27(9), p 816-820.

    Article  CAS  Google Scholar 

  5. D. Kumar, K.K. Pandey, S. Kumari, A.M. Nair, K.K. Mirche, S.S. Maurya, S.M. Pandey, and A.K. Keshri, Effect of Nanodiamond Concentration on the Electrochemical Behavior of Plasma Sprayed Titanium-Nanodiamond Nanocomposite Coatings, Diam. Relat. Mater., 2022, 130(May), p 109419.

    Article  CAS  Google Scholar 

  6. S. Kumari, A. Islam, K.K. Mirche, P.S. Kiran, S.S. Maurya, D. Kumar, S.M. Pandey, and A.K. Keshri, Plasma Sprayed Graphene Reinforced Titanium Nitride Composite Coating: An Effective Solution for Mitigating the Corrosion Attack, Surf. Coatings Technol., 2022, 445, p 128704.

    Article  CAS  Google Scholar 

  7. A. Loganathan, S. Rengifo, A.F. Hernandez, C. Zhang, and A. Agarwal, (2021) Effect of Nanodiamond Reinforcement and Heat-Treatment on Microstructure, Mechanical and Tribological Properties of Cold Sprayed Aluminum Coating, Surf. Coat. Technol., 2020, 412, p 127037. https://doi.org/10.1016/j.surfcoat.2021.127037

    Article  CAS  Google Scholar 

  8. M.A. Awotunde, B.J. Babalola, P.A. Olubambi, and D.L. Chen, Recrystallization Mechanisms during High-Temperature XRD and Oxidation Behavior of CNT-Reinforced NiAl Composites, Corros. Sci., 2022, 204, p 110384.

    Article  CAS  Google Scholar 

  9. H. Xu, Z. Yang, M.K. Li, Y.L. Shi, Y. Huang, and H.L. Li, Synthesis and Properties of Electroless Ni-P-Nanometer Diamond Composite Coatings, Surf. Coat. Technol., 2005, 191(2-3), p 161-165.

    Article  CAS  Google Scholar 

  10. V. Method, T. Saatcı, E. Salamci, R. Unal, N. Gidikova, R. Valov, and V. Petkov, Investigating The Corrosion Behavior of Electrodeposited Nickel-Nano Diamond Composite Coating on Porous Materials by the Cyclic, Phys. Rev., 2017, 47, p 49-54.

    Google Scholar 

  11. I. Hannstein, A.-K. Adler, V. Lapina, V. Osipov, J. Opitz, J. Schreiber, and N. Meyendorf, Chemically Activated Nanodiamonds for Aluminum Alloy Corrosion Protection and Monitoring, Smart Sens. Phenomena. Technol. Netw. Syst., 2009, 7293, p 72930.

    Google Scholar 

  12. M. Yu, C. George, Y. Cao, D. Wootton, and J. Zhou, Microstructure, Corrosion, and Mechanical Properties of Compression-Molded Zinc-Nanodiamond Composites, J. Mater. Sci., 2014, 49(10), p 3629-3641.

    Article  CAS  Google Scholar 

  13. S. Nezamdoust, D. Seifzadeh, and A. Habibi-Yangjeh, Nanodiamond Incorporated Sol−gel Coating for Corrosion Protection of Magnesium Alloy, Trans. Nonferrous Met. Soc. China., 2020, 30(6), p 1535-1549.

    Article  CAS  Google Scholar 

  14. H. Ashassi-Sorkhabi and M. Es’Haghi, Corrosion Protection of Mild Steel by Nano-Colloidal Polyaniline/Nanodiamond Composite Coating in NaCl Solution, J. Coat. Technol. Res., 2014, 11(3), p 371-380.

    Article  CAS  Google Scholar 

  15. D.J. Woo, F.C. Heer, L.N. Brewer, J.P. Hooper, and S. Osswald, Synthesis of Nanodiamond-Reinforced Aluminum Metal Matrix Composites Using Cold-Spray Deposition, Carbon N. Y., 2015, 86, p 15-25. https://doi.org/10.1016/j.carbon.2015.01.010

    Article  CAS  Google Scholar 

  16. V.N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The Properties and Applications of Nanodiamonds, Nat. Nanotechnol., 2012, 7(1), p 11-23. https://doi.org/10.1038/nnano.2011.209

    Article  CAS  Google Scholar 

  17. D. Bogdanov, A. Bogdanov, V. Plotnikov, S. Makarov, A. Yelisseyev, and A. Chepurov, Core Growth of Detonation Nanodiamonds under High-Pressure Annealing, RSC Adv. Soc. Chem., 2021, 11(21), p 12961-12970.

    Article  CAS  Google Scholar 

  18. X. Chen, B. Zhang, Y. Gong, P. Zhou, and H. Li, Mechanical Properties of Nanodiamond-Reinforced Hydroxyapatite Composite Coatings Deposited by Suspension Plasma Spraying, Appl. Surf. Sci., 2018, 439, p 60-65. https://doi.org/10.1016/j.apsusc.2018.01.014

    Article  CAS  Google Scholar 

  19. M. Bao, C. Zhang, D. Lahiri, and A. Agarwal, The Tribological Behavior of Plasma-Sprayed Al-Si Composite Coatings Reinforced with Nanodiamond, Jom, 2012, 64(6), p 702-708.

    Article  CAS  Google Scholar 

  20. A.K. Keshri, D. Lahiri and A. Agarwal, Carbon Nanotubes Improve the Adhesion Strength of a Ceramic Splat to the Steel Substrate, Carbon N. Y., 2011, 49(13), p 4340-4347.

    Article  CAS  Google Scholar 

  21. K.K. Pandey, R.K. Singh, O.A. Rahman, S. Choudhary, R. Verma, and A.K. Keshri, Insulator-Conductor Transition in Carbon Nanotube and Graphene Nanoplatelates Reinforced Plasma Sprayed Alumina Single Splat: Experimental Evidence by Conductive Atomic Force Microscopy, Ceram. Int., 2020, 46(15), p 24557-24563. https://doi.org/10.1016/j.ceramint.2020.06.243

    Article  CAS  Google Scholar 

  22. A. Nieto, J. Kim, O.V. Penkov, D.E. Kim, and J.M. Schoenung, Elevated Temperature Wear Behavior of Thermally Sprayed WC-Co/Nanodiamond Composite Coatings, Surf. Coatings Technol., 2017, 315, p 283-293.

    Article  CAS  Google Scholar 

  23. F. Saba, F. Zhang, S. Liu, and T. Liu, Tribological Properties, Thermal Conductivity and Corrosion Resistance of Titanium/Nanodiamond Nanocomposites, Compos. Commun., 2018, 10, p 57-63. https://doi.org/10.1016/j.coco.2018.06.008

    Article  Google Scholar 

  24. D. Wu, S. Liu, Z. Yuan, P. Cao, X. Wei, and C. Zhang, Effect of Pre-Oxidation on High-Temperature Chlorine-Induced corrosion Properties of Air Plasma-Sprayed Ni-5%Al Coatings, J. Therm. Spray Technol., 2021, 30(7), p 1927-1939.

    Article  CAS  Google Scholar 

  25. G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22-31.

    Article  CAS  Google Scholar 

  26. T. Ungár, S. Ott, P.G. Sanders, A. Borbély, and J.R. Weertman, Dislocations, Grain Size and Planar Faults in Nanostructured Copper Determined by High Resolution X-Ray Diffraction and a New Procedure of Peak Profile Analysis, Acta Mater., 1998, 46(10), p 3693-3699.

    Article  Google Scholar 

  27. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, and A. Sumaila, Comparative Study of Crystallite Size Using Williamson-Hall and Debye-Scherrer Plots for ZnO Nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 2019, 10(4), p 10245.

    Article  Google Scholar 

  28. K. Kumar and A. Chowdhury, “Pushing the Limits of Analytical Characterization Tools: How Much Is Too Much?” Handbook on Miniaturization in Analytical Chemistry: Application of Nanotechnology, Elsevier Inc., 2020.

  29. H. Chen, Microstructure Characterisation of Un-Melted Particles in a Plasma Sprayed CoNiCrAlY Coating, Mater. Charact., 2018, 136(2017), p 444-451.

    Article  CAS  Google Scholar 

  30. L. Yuan Qin, J. She Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Nonfer. Metals Soc. China., 2010, 20(1), p 82-89.

    Article  Google Scholar 

  31. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201-1204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author of this paper, Kamlesh Kumar Mirche, and Anup Kumar Keshri acknowledge Indian Institute of Technology Patna for giving the infrastructure and financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Keshri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirche, K.K., Pandey, K.K., Pandey, S.M. et al. Microstructure and Corrosion Behavior of Plasma-Sprayed Nanodiamond-Reinforced NiAl Nanocomposite Coating. J Therm Spray Tech 32, 1299–1310 (2023). https://doi.org/10.1007/s11666-023-01558-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01558-6

Keywords

Navigation