Skip to main content

Advertisement

Log in

Effect of Powder Feed Rate on Mechanical Properties of Boron Carbide Coatings by Atmospheric Plasma Spraying (APS)

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Boron carbide (B4C) is considered an ideal material for plasma-facing materials (PFMs) in nuclear fusion, due to a combination of excellent properties: high elastic modulus, high chemical stability, low Z and high melting point. In this paper, B4C coatings were fabricated onto tungsten (W) substrates using atmospheric plasma spraying (APS). The powder feed rate significantly affects the coating quality. The effects of different powder feed rates on the properties of sprayed coatings including thickness, porosity, and adhesion strength were investigated. The particle temperature and the particle velocity were measured by the diagnostic system DPV evolution. Phase evolution and microstructure were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis showed that the main phase composition of the coating did not change compared with the initial B4C powder, the surface of the B4C coating was oxidized and formed B2O3. It has been demonstrated that the adhesion strength of the coating increases and then decreases with the increase of powder feed rate. Under the optimal powder feed rate of 1 g/min, the optimal adhesion strength of the coating is 11.38 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Ongena and Y. Ogawa, Nuclear Fusion: Status Report and Future Prospects, Energy Policy, 2016, 96, p 770-778. https://doi.org/10.1016/j.enpol.2016.05.037

    Article  Google Scholar 

  2. A. Marco, A.J. Garrido, S. Coda, and I. Garrido, A Variable Structure Control Scheme Proposal for the Tokamak à Configuration Variable, Complexity, 2019, 24, p 1-10.

    Article  Google Scholar 

  3. J. Linke, J. Du, T. Loewenhoff, G. Pintsuk, B. Spilker, I. Steudel, and M. Wirtz, Challenges for Plasma-Facing Components in Nuclear Fusion, Matter. Radiat. Extrem., 2019, 4(5), p 2-18. https://doi.org/10.1063/1.5090100

    Article  CAS  Google Scholar 

  4. F. Wang, G.N. Luo, and J. Huang, Transient and Steady State High Heat Load Testing of Atmospheric Plasma Sprayed Tungsten, Fusion Eng. Des., 2020, 2020(152), p 111-427. https://doi.org/10.1016/j.fusengdes.2019.111427

    Article  CAS  Google Scholar 

  5. J. Hu, G. Zuo, L. Wang, R. Ding, Y. Yu, Y. Zhang, and W. Xu, Brief Review of the Interactions between Plasma and Walls in Magnetic Controlled Fusion Devices, J. Univ. Sci. Technol. China, 2020, 50(9), p 1193-1216.

    CAS  Google Scholar 

  6. J.N. Brooks, L. El-Guebaly, A. Hassanein, and T. Sizyuk, Plasma-Facing Material Alternatives to Tungsten, Nucl. Fusion, IOP Publishing, 2015, 55(4), p 1-7.

    CAS  Google Scholar 

  7. X. Wu, X. Li, Y. Zhang, Y. Xu, W. Liu, Z. Xie, R. Liu, G.N. Luo, X. Liu, and C.S. Liu, Recent Advances on Interface Design and Preparation of Advanced Tungsten Materials for Plasma Facing Materials, J. Fusion Energy, 2020, 39(6), p 342-354. https://doi.org/10.1007/s10894-020-00271-4

    Article  CAS  Google Scholar 

  8. V. Philipps, Tungsten as Material for Plasma-Facing Components in Fusion Devices, J. Nucl. Mater., 2011, 415(1 SUPPL), p S2-s9. https://doi.org/10.1016/j.jnucmat.2011.01.110

    Article  CAS  Google Scholar 

  9. M. Shimada and Y. Hirooka, Actively Convected Liquid Metal Divertor, Nucl. Fusion, 2014, 54(12), p 1-7.

    Article  Google Scholar 

  10. J.E. Döring, R. Vaßen, J. Linke, and D. Stöver, Properties of Plasma Sprayed Boron Carbide Protective Coatings for the First Wall in Fusion Experiments, J. Nucl. Mater., 2002, 307-311(1 SUPPL.), p 121-125.

    Article  Google Scholar 

  11. O.I. Buzhinskij and Y.M. Semenets, Thick Boron Carbide Coatings for Protection of Tokamak First Wall and Divertor, Fusion Eng. Des., 1999, 45(4), p 343-360.

    Article  CAS  Google Scholar 

  12. J. Matějíček, P. Chráska, and J. Linke, Thermal Spray Coatings for Fusion Applications - Review, J. Therm. Spray Technol., 2007, 16(1), p 64-83.

    Article  Google Scholar 

  13. L.B. Begrambekov, A.V. Grunin, and Y.A. Sadovskiy, Behavior of B4C Coating on Tungsten under Exposition on T-10 Tokamak Plasma, J. Phys. Conf. Ser., 2019, 1281(1), p 1-4.

    Article  Google Scholar 

  14. Q. Zhou, P. Zhao, Q. Guo, L. Li, and Y. Meng, Effect of Spray Distance to the Adhesion Strength of Inductively Coupled Plasma Sprayed B4C/W Coating, Trans. China Electrotech. Soc., 2019, 34(6), p 1345-1350.

    Google Scholar 

  15. E. Azizov, V. Barsuk, L. Begrambekov, O. Buzhinsky, A. Evsin, A. Gordeev, A. Grunin, N. Klimov, V. Kurnaev, I. Mazul, V. Otroshchenko, A. Putric, Y. Sadovskiy, P. Shigin, S. Vergazov, and A. Zakharov, Boron Carbide (B4C) Coating, Depos. Test. J. Nucl. Mater., 2015, 463, p 792-795. https://doi.org/10.1016/j.jnucmat.2015.01.015

    Article  CAS  Google Scholar 

  16. P.K. Purnapu Rupa, P. Sharma, R.M. Mohanty, and K. Balasubramanlan, Microstructure and Phase Composition of Composite Coatings Formed by Plasma Spraying of ZrO 2and B4C Powders, J. Therm. Spray Technol., 2010, 19(4), p 816-823.

    Article  Google Scholar 

  17. Y. Zeng, C. Ding, and S.W. Lee, Young’s Modulus and Residual Stress of Plasma-Sprayed Boron Carbide Coatings, J. Eur. Ceram. Soc., 2001, 21(1), p 87-91.

    Article  CAS  Google Scholar 

  18. Y. Zeng, S.W. Lee, and C. Ding, Study on Plasma Sprayed Boron Carbide Coating, J. Therm. Spray Technol., 2002, 11(1), p 129-133.

    Article  CAS  Google Scholar 

  19. M.R. Mrdak, Influence of a Powder Feed Rate on the Properties of the Plasma Sprayed Chromium Carbide-25% Nickel Chromium Coating, Vojnoteh. Glas., 2014, 62(2), p 7-26.

    Article  Google Scholar 

  20. S.A. Sadeghi-Fadaki, K. Zangeneh-Madar, and Z. Valefi, The Adhesion Strength and Indentation Toughness of Plasma-Sprayed Yttria Stabilized Zirconia Coatings, Surf. Coatings Technol., 2010, 204(14), p 2136-2141.

    Article  CAS  Google Scholar 

  21. B. Swain and A. Behera, Effect of Powder Feed Rate on Adhesion Strength and Microhardness of APS NiTi Coating: A Microstructural Investigation, Surf. Topogr. Metrol. Prop, 2021, 9(2), p 1-7.

    Article  Google Scholar 

  22. P. Nunthavarawong, N. Sacks, and I. Botef, Effect of Powder Feed Rate on the Mechanical Properties of WC-5 Wt.%Ni Coatings Deposited Using Low Pressure Cold Spray, Int. J. Refract. Met. Hard Mater., 2016, 61, p 230-237. https://doi.org/10.1016/j.ijrmhm.2016.10.001

    Article  CAS  Google Scholar 

  23. M. Mrdak, B. Medjo, D. Veljić, M. Arsić, and M. Rakin, The Influence of Powder Feed Rate on Mechanical Properties of Atmospheric Plasma Spray (APS) Al-12Si Coating, Rev. Adv. Mater. Sci., 2019, 58(1), p 75-81.

    Article  Google Scholar 

  24. G. Mauer, R. Vaßen, S. Zimmermann, T. Biermordt, M. Heinrich, J.L. Marques, K. Landes, and J. Schein, Investigation and Comparison of In-Flight Particle Velocity during the Plasma-Spray Process as Measured by Laser Doppler Anemometry and DPV-2000, J. Therm. Spray Technol., 2013, 22(6), p 892-900.

    Article  CAS  Google Scholar 

  25. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-G3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424.

    Article  CAS  Google Scholar 

  26. J. Colmenares-Angulo, K. Shinoda, T. Wentz, W. Zhang, Y. Tan, and S. Sampath, On the Response of Different Particle State Sensors to Deliberate Process Variations, J. Therm. Spray Technol., 2011, 20(5), p 1035-1048.

    Article  Google Scholar 

  27. N. Pulido-González, S. García-Rodríguez, M. Campo, J. Rams, and B. Torres, Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings, J. Therm. Spray Technol., 2020, 29(3), p 384-399.

    Article  Google Scholar 

  28. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20(3), p 590-607.

    Article  CAS  Google Scholar 

  29. J. Kitamura, S. Usuba, Y. Kakudate, H. Yokoi, K. Yamamoto, A. Tanaka, and S. Fujiwara, Structure and Mechanical Properties of Boron Carbide Coatings Formed by Electromagnetically Accelerated Plasma Spraying, Diam. Relat. Mater., 2003, 12(10-11), p 1891-1896.

    Article  CAS  Google Scholar 

  30. Q.H.F. Rebelo, C.S. Ferreira, P.L. Santos, J.A. Bonacin, R.R. Passos, L.A. Pocrifka, and M.M.S. Paula, Synthesis and Characterization of a Nanocomposite NiO/SiO2 from a Sustainable Source of SiO2, Part. Sci. Technol., 2019, 37(8), p 907-911.

    Article  CAS  Google Scholar 

  31. A.M. Ali and R. Najmy, Structural, Optical and Photocatalytic Properties of NiO-SiO2 Nanocomposites Prepared by Sol-Gel Technique, Catal. Today, 2013, 208, p 2-6.

    Article  CAS  Google Scholar 

  32. L. Li, G.H. Ni, Q.J. Guo, Q.F. Lin, P. Zhao, and J.L. Cheng, Spheroidization of Silica Powders by Radio Frequency Inductively Coupled Plasma with Ar-H2 and Ar-N2 as the Sheath Gases at Atmospheric Pressure, Int. J. Miner. Metall. Mater., 2017, 24(9), p 1067-1074.

    Article  CAS  Google Scholar 

  33. C.M. Lin, H.L. Tsai, and C. Yang, Effects of Microstructure and Properties on Parameter Optimization of Boron Carbide Coatings Prepared Using a Vacuum Plasma-Spraying Process, Surf. Coatings Technol., 2012, 206(10), p 2673-2681. https://doi.org/10.1016/j.surfcoat.2011.11.023

    Article  CAS  Google Scholar 

  34. H. Chen, J. Yang, Q. Shuai, J. Li, Q. Ouyang, and S. Zhang, In-Situ Doping B4C Nanoparticles in PAN Precursors for Preparing High Modulus PAN-Based Carbon Fibers with Boron Catalytic Graphitization, Compos. Sci. Technol., 2020, 200(September), p 2-10.

    Google Scholar 

  35. Y. Wang, Q. Liu, B. Zhang, J. Ding, H. Zhang, Y. Jin, Z. Zhong, W. Wang, and F. Ye, Effect of Pretreatment Process of B4C Powder on the Surface Properties and Freeze-Cast Porous Ceramics, Mater. Chem. Phys., 2020, 251(February), p 2-9.

    Google Scholar 

  36. G. Zhuo, L. Su, K. Jiang, and J. Yang, Effect of Spraying Power on Oxidation Resistance of MoSi2-ZrB2 Coating for Nb-Si Based Alloy Prepared by Atmospheric Plasma, Mater. Artic., 2020, 13(22), p 5060.

    CAS  Google Scholar 

  37. D.S. Lee, S. Yun, J.W. Han, M.Y. Song, Y.G. Kim, J.K. Lee, J. Choi, S. Chang, S. Hong, and J.H. Kim, Microstructural Evolution and Mechanical Properties of Atmospheric Plasma Sprayed Y2O3 Coating with State of In-Flight Particle, Ceram. Int., 2021, 47(3), p 3853-3866. https://doi.org/10.1016/j.ceramint.2020.09.246

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was jointly supported by China Baowu Low Carbon Metallurgical Innovation Foundation. We thank Prof. Huang Jianjun’s group from ShenZhen University for their valuable help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Zhao, P., Zeng, M. et al. Effect of Powder Feed Rate on Mechanical Properties of Boron Carbide Coatings by Atmospheric Plasma Spraying (APS). J Therm Spray Tech 32, 162–174 (2023). https://doi.org/10.1007/s11666-022-01467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01467-0

Keywords

Navigation