Skip to main content

Advertisement

Log in

Study of the Properties of Titanium Porous Coating with Different Porosity Gradients on 316L Stainless Steel by a Cold Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Loosening of implants could be avoided by using porous biomaterial coating. However, a highly porous coating could lead to poor bond strength. In this work, an attempt to apply gradient porous coating to avoid this was made. Titanium (Ti) gradient porous coatings with three layers were coated on grit-blasted and ground 316L stainless steels by cold spray using various nitrogen gas temperatures and pressures. The lowest porosity layer (5% porosity) at the coating/substrate interface, and the high porosity layer (30-40% porosity) at the top surface was successfully deposited. The lowest porosity gradient was obtained with the same spray conditions for 2nd and 3rd layers, while the higher porosity gradient coating was achieved by altering the gas pressure for the 2nd layer deposition. Different failure modes of Ti coating including adhesion, glue, and cohesion failure, were found. High porosity gradient samples relatively showed a high bond strength (34-54 MPa) compared to the low porosity gradient samples (23-41MPa). The cohesion failure resulted in a reduction in bond strength. This suggested that controlling the porosity gradient could improve the coating bond strength. Note that surface preparation by grit blasting could reduce the bond strength due to the embedded alumina grit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.B. Park, Biomaterials Science, and Engineering, Springer, New York, 1984, p 193–233

    Google Scholar 

  2. N. Eliaz, T.M. Sridhar, U.K. Mudali and B. Raj, Electrochemical and Electrophoretic Deposition of Hydroxyapatite for Orthopedic Applications, Surf. Eng., 2005, 21(3), p 238–242.

    Article  CAS  Google Scholar 

  3. V. Borsari, G. Giavaresi, M. Fini, P. Torricelli, A. Salito, R. Chiesa, L. Chiusoli, A. Volpert, L. Rimondini and R. Giardino, Physical Characterization of Different-Roughness Titanium Surfaces, With and Without Hydroxyapatite Coating, and their Effect on Human Osteoblast-Like Cells, J. Biomed. Mater. Res. B Appl. Biomater., 2005, 75(2), p 359–368.

    Article  Google Scholar 

  4. S. Sivarasu, P. Beulah and L. Mathew, Novel Approach for Designing a Low Weight Hip Implant Used in Total Hip Arthroplasty Adopting Skeletal Design Techniques, Artif. Organs, 2011, 35(6), p 663–666.

    Article  Google Scholar 

  5. S. Kannan, A. Balamurugan and S. Rajeswari, Hydroxyapatite Coatings on Sulfuric Acid Treated Type 316L SS and its Electrochemical Behavior in Ringer’s Solution, Mater. Lett., 2003, 57(16–17), p 2382–2389.

    Article  CAS  Google Scholar 

  6. K. Colic and A. Sedmak, The Current Approach to Research and Design of the Artificial Hip Prosthesis: A Review, Rheumatol. Orthop. Med., 2016, 1(1), p 1–7.

    Article  Google Scholar 

  7. J.R. Davis, Handbook of Materials for Medical Devices, ASM International, Ohio, 2003, p 179–194

    Google Scholar 

  8. Y.W. Lim, S.Y. Kwon, D.H. Sun and Y.S. Kim, The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation, Clin. Orthop. Relat. R., 2011, 469(2), p 330–338.

    Article  Google Scholar 

  9. J.A. Disegi and L. Eschbach, Stainless Steel in Bone Surgery, Inj. Int. J. Care Inj., 2000, 31(4), p 2–6.

    Article  Google Scholar 

  10. C.M. Han, H.E. Kim, Y.S. Kim and S.K. Han, Enhanced Biocompatibility of Co-Cr Implant Material by Ti Coating and Micro-Arc Oxidation, J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(1), p 165–170.

    Article  Google Scholar 

  11. L.L. Guehennec, A. Soueidan, P. Layrolle and Y. Amouriq, Surface Treatments of Titanium Dental Implants for Rapid Osseointegration, Dent. Mater., 2007, 23(7), p 844–854.

    Article  Google Scholar 

  12. Y.W. Lim, S.Y. Kwon, D.H. Sun, H.E. Kim and Y.S. Kim, Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study, Clin. Orthop. Relat. R., 2009, 467(9), p 2251–2258.

    Article  Google Scholar 

  13. A. Unnanuntana, A. Dimitroulias, M.P. Bolognesi, K.L. Hwang, S.B. Goodman and R.E. Marcus, Cementless Femoral Prostheses Cost more to Implant than Cemented Femoral Prostheses, Clin. Orthop. Relat. R., 2009, 467(6), p 1546–1551.

    Article  Google Scholar 

  14. Standard Specification for Femoral Prostheses—Metallic Implants, F2068-15, www.astm.org, ASTM International, 2015. Accessed from 10 Apr 2019.

  15. N. Soro, L. Brassart, Y. Chena, M. Veidt, H. Attar and M.S. Dargusch, Finite Element Analysis of Porous Commercially Pure Titanium for Biomedical Implant Application, Mater. Sci. Eng. A, 2018, 725, p 43–50.

    Article  CAS  Google Scholar 

  16. M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock and A.F. Schilling, Advances in Porous Biomaterials for Dental and Orthopedic Applications, Materials, 2010, 3(5), p 2947–2974.

    Article  CAS  Google Scholar 

  17. M. Topuz, B. Dikici and M. Gavgali, Titanium-Based Composite Scaffolds Reinforced with Hydroxyapatite-Zirconia: Production, Mechanical and in-Vitro Characterization, J. Mech. Behav. Biomed. Mater., 2021, 118, p 1–13.

    Article  Google Scholar 

  18. X. Miao and D. Sun, Graded/Gradient Porous Biomaterials, Materials, 2010, 3(1), p 26–47.

    Article  CAS  Google Scholar 

  19. C.E. Wen, Y. Yamada, A. Nouri and P.D. Hodgson, Porous Titanium with Porosity Gradients for Biomedical Applications, Mater. Sci. Forum, 2007, 539–543, p 720–725.

    Article  Google Scholar 

  20. Y. Torres, P. Trueba, J.J. Pavon, E. Chicardi, P. Kamm, F. Garcia-Moreno and J.A. Rodriguez-Ortiz, Design, Processing and Characterization of Titanium with Radial Graded Porosity for Bone Implants, Mater. Des., 2016, 110, p 179–187.

    Article  CAS  Google Scholar 

  21. G. Jiang, Q. Li, C. Wang, J. Dong and G. He, Fabrication of Graded Porous Titanium-Magnesium Composite for Load-Bearing Biomedical Applications, Mater. Des., 2015, 67, p 354–359.

    Article  CAS  Google Scholar 

  22. Z.U. Rahman, I. Shabib and W. Haider, Surface Characterization and Cytotoxicity Analysis of Plasma Sprayed Coatings on Titanium Alloys, Mater. Sci. Eng. C, 2016, 67, p 675–683.

    Article  Google Scholar 

  23. J.L. Ong, D.L. Carnes and K. Bessho, Evaluation of Titanium Plasma-Sprayed and Plasma-Sprayed Hydroxyapatite Implants In Vivo, Biomaterials, 2004, 5(19), p 4601–4606.

    Article  Google Scholar 

  24. X. Chen, Q. Fuab, Y. Jin, M. Li, R. Yang, X. Cui and M. Gong, In Vitro Studying Corrosion Behavior of Porous Titanium Coating in Dynamic Electrolyte, Mater. Sci. Eng. C, 2017, 70(2), p 1071–1075.

    Article  CAS  Google Scholar 

  25. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings Ch. 3 and 8, John Wiley and Sons, Hoboken, 2008.

    Book  Google Scholar 

  26. A. Papyrin, Cold Spray Technology, Adv. Mater. Process, 2001, 159(9), p 49–51.

    CAS  Google Scholar 

  27. H. Dong, Surface Engineering of Light Alloys, Woodhead Publishing, Sawston, 2010, p 242–293

    Book  Google Scholar 

  28. B. Dikicia and M. Topuz, Production of Annealed Cold-Sprayed 316L Stainless Steel Coatings for Biomedical Applications and their In-Vitro Corrosion Response, Prot. Met. Phys. Chem. Surf., 2018, 54(2), p 333–339.

    Article  Google Scholar 

  29. H. Fukanuma and N. Ohno, A Study of Adhesive Strength of Cold Spray Coatings, Thermal Spray: Advances in Technology and Application, May 10-12, 2004 (Osaka, Japan), ASM International, Ohio, 2004, p 329–334

    Google Scholar 

  30. S. Yin, X. Suo, J. Su, Z. Guo, H. Liao and X. Wang, Effects of Substrate Hardness and Spray Angle on the Deposition Behavior of Cold-Sprayed Ti Particles, J. Therm. Spray Technol., 2014, 23(1–2), p 76–83.

    Article  CAS  Google Scholar 

  31. X.-T. Luo, Y.-K. Wei, Y. Wang and C.-J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by an In-Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527–533.

    Article  CAS  Google Scholar 

  32. T. Suhonen, T. Varis, S. Dosta, M. Torrell and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013, 61(17), p 6329–6337.

    Article  CAS  Google Scholar 

  33. S. Yin, P. He, H. Liao and X. Wang, Deposition Features of Ti Coating Using Irregular Powders in Cold Spray, J. Therm. Spray Technol., 2014, 23(6), p 984–990.

    Article  CAS  Google Scholar 

  34. T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, Key Eng. Mater., 2013, 533, p 53–90.

    Article  Google Scholar 

  35. S. Kumar, G. Bae and C. Lee, Influence of Substrate Roughness on Bonding Mechanism in Cold Spray, Surf. Coat Tech., 2016, 304, p 592–605.

    Article  CAS  Google Scholar 

  36. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288–303.

    Article  CAS  Google Scholar 

  37. H.R. Wang, B.R. Hou, J. Wang, Q. Wang and W.Y. Li, Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings, J. Therm. Spray Technol., 2008, 17(5–6), p 736–741.

    Article  CAS  Google Scholar 

  38. J. Sun, Y. Han and K. Cui, Innovative Fabrication of Porous Titanium Coating on Titanium by Cold Spraying and Vacuum Sintering, Mater. Lett., 2008, 62(21), p 3623–3625.

    Article  CAS  Google Scholar 

  39. K. Wathanyu, Study and Development of Biomaterial by Porous Coating Deposition Process. In: The 4th Progress Report, Research and Researchers for Industries-RRI of the Thailand Research Fund, 2017

  40. K. Wathanyu, Study and Development of Biomaterial by Porous Coating Deposition Process. In: The 5th Progress Report, Research and Researchers for Industries-RRI of the Thailand Research Fund, 2017

  41. F.D.E. Latief, Analysis and Visualization of 2D and 3D Grain and Pore Size of Fontainebleau Sandstone Using Digital Rock Physics, J. Phys. Conf. Ser., 2016, 739, p 012047.

    Article  Google Scholar 

  42. S.T. Williams, P.J. Withers, I. Todd and P.B. Prangnell, The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components, Sci. Rep., 2017, 7(7308), p 1–13.

    Google Scholar 

  43. Standard Test Method for Microindentation Hardness of Materials, E384-05a, www.astm.org, ASTM International, 2005. Accessed from 6 Jan 2020.

  44. Accepted Practice to Test Bond Strength of Thermal Spray Coatings, J. Therm. Spray Tech., 2013, 22, p 1263–1266. https://doi.org/10.1007/s11666-013-0033-6.

  45. A. Wei-Yee Tan, W. Sun, A. Bhowmik, J.Y. Lek, X. Song, W. Zhai, H. Zheng, F. Li, I. Marinescu, Z. Dong and E. Liu, Effect of Substrate Surface Roughness on Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates, J. Therm. Spray Technol., 2019, 28(8), p 1959–1973.

    Article  Google Scholar 

  46. A. Nouri and C. Wen, Surface Coating and Modification of Metallic Biomaterials, Woodhead Publishing, Sawston, 2015, p 3–60

    Book  Google Scholar 

  47. R. Singh, K.H. Rauwald, E. Wessel, G. Mauer, S. Schruefer, A. Barth, S. Wilson and R. Vassen, Effects of Substrate Roughness and Spray-Angle on Deposition Behavior of Cold-Sprayed Inconel 718, Surf. Coat. Technol., 2016, 319, p 249–259.

    Article  Google Scholar 

  48. Standard Test Method for Tension Testing of Calcium Phosphate and Metallic Coatings, F 1147-05, www.astm.org, ASTM International, 2011. Accessed from 27 May 2016.

  49. X. Guangsheng, K. Hongchao, L. Xianghong, L. Fuping, L. Jinshan and Z. Lian, Microstructure and Mechanical Properties of Porous Titanium Based on Controlling Young’s Modulus, Rare Met. Mat. Eng., 2017, 46(8), p 2041–2041.

    Article  Google Scholar 

  50. S. Monti, Reduction of the Local Stress Field around Holes through Porous Shaped Structures, Communications, 2018, 20(3), p 36–41.

    Article  Google Scholar 

  51. X. Chen, C. Shaw, L. Gelman and K.T.V. Grattan, Advances in Test and Measurement of the Interface Adhesion and Bond Strengths in Coating-Substrate Systems, Emphasising Blister and Bulk Techniques, Measurement, 2019, 139, p 387–402.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received from the Research and Researchers for Industries-RRI of The Thailand Research Fund and funding from the NanoShield Company Limited (Thailand) under the Research Scholar Grant No. PHD58I0047 are truly appreciated. Impact Innovation GmbH (Germany) provided the cold spray coating and adhesion testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tuchinda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wathanyu, K., Tuchinda, K., Daopiset, S. et al. Study of the Properties of Titanium Porous Coating with Different Porosity Gradients on 316L Stainless Steel by a Cold Spray Process. J Therm Spray Tech 31, 545–558 (2022). https://doi.org/10.1007/s11666-021-01316-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01316-6

Keywords

Navigation