Skip to main content
Log in

Performance and Stability of Plasma-Sprayed 10 × 10 cm2 Self-sealing Metal-Supported Solid Oxide Fuel Cells

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study adopts a novel structure design of large-area planar metal-supported solid oxide fuel cell (MS-SOFC), which exhibits the characteristics of self-sealing and high thermal cycling resistance. The self-sealing structure of MS-SOFCs is achieved by brazing technology. Plasma spraying is performed to prepare all functional layers of cells. The size of cells is 10 × 10 cm2. The coefficients of thermal expansion of relevant parts (i.e., porous metal support, interconnector and compound structure of both) and the electrical conductivity of brazing solder were measured. The microstructure of brazing area was observed in situ at 800 °C for 500 h, and the distribution of fuel gas in the interconnector was simulated. The performance of cells was characterized and found that the maximum power density can reach up to 716 mW cm−2 at 700 °C. Moreover, the long-term stability of the cell was investigated for about 500 h with 6 times of thermal cycling implemented during this period. The open circuit voltage and the maximum power density of the cell showed a good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Ramadhani, M.A. Hussain, H. Mokhlis and S. Hajimolana, Optimization Strategies for Solid Oxide Fuel Cell (SOFC) Application: A Literature Survey, Renew. Sustain. Energy Rev., 2017, 76, p 460–484.

    Article  Google Scholar 

  2. M. Mehrpooya, M. Sadeghzadeh, A. Rahimi and M. Pouriman, Technical Performance Analysis of a Combined Cooling Heating and Power (CCHP) System Based on Solid Oxide Fuel Cell (SOFC) Technology: A Building Application, Energy Convers. Manag., 2019, 198, p 111767.

    Article  Google Scholar 

  3. E. Shayan, V. Zare and I. Mirzaee, On the Use of Different Gasification Agents in a Biomass Fueled SOFC by Integrated Gasifier: A Comparative Exergo-Economic Evaluation and Optimization, Energy, 2019, 171, p 1126–1138.

    Article  CAS  Google Scholar 

  4. P. Blennow, J. Hjelm, T. Klemensø, S. Ramousse, A. Kromp, A. Leonide and A. Weber, Manufacturing and Characterization of Metal-Supported Solid Oxide Fuel Cells, J. Power Sources, 2011, 196(17), p 7117–7125.

    Article  CAS  Google Scholar 

  5. V.V. Krishnan, Recent Developments in Metal-Supported Solid Oxide Fuel Cells, Wiley Interdiscip. Rev. Energy Environ., 2017, 6(5), p e246.

    Google Scholar 

  6. F. Thaler, D. Udomsilp, W. Schafbauer, C. Bischof, Y. Fukuyama, Y. Miura, M. Kawabuchi, S. Taniguchi, S. Takemiya, A. Nenning, A.K. Opitz and M. Bram, Redox Stability of Metal-Supported Fuel Cells with Nickel/Gadolinium-Doped Ceria Anode, J. Power Sources, 2019, 434, p 226751.

    Article  CAS  Google Scholar 

  7. M.C. Tucker, G.Y. Lau, C.P. Jacobson, L.C. DeJonghe and S.J. Visco, Performance of Metal-Supported SOFCs with Infiltrated Electrodes, J. Power Sources, 2007, 171(2), p 477–482.

    Article  CAS  Google Scholar 

  8. M.C. Tucker, Progress in Metal-Supported Solid Oxide Fuel Cells: A Review, J. Power Sources, 2010, 195(15), p 4570–4582.

    Article  CAS  Google Scholar 

  9. P. Blennow, J. Hjelm, T. Klemensø, Å.H. Persson, S. Ramousse and M. Mogensen, Planar Metal-Supported SOFC with Novel Cermet Anode, Fuel Cells, 2011, 11(5), p 661–668.

    Article  CAS  Google Scholar 

  10. H. Kurokawa, K. Kawamura and T. Maruyama, Oxidation Behavior of Fe-16Cr Alloy Interconnect for SOFC Under Hydrogen Potential Gradient, Solid State Ion., 2004, 168(1), p 13–21.

    Article  CAS  Google Scholar 

  11. I. Antepara, I. Villarreal, L.M. Rodríguez-Martínez, N. Lecanda, U. Castro and A. Laresgoiti, Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs, J. Power Sources, 2005, 151, p 103–107.

    Article  CAS  Google Scholar 

  12. J. Oberste Berghaus, J.G. Legoux, C. Moreau, R. Hui, C. Decès-Petit, W. Qu, S. Yick, Z. Wang, R. Maric and D. Ghosh, Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes, J. Therm. Spray Technol., 2008, 17(5), p 700–707.

    Article  Google Scholar 

  13. N.P. Brandon, A. Blake, D. Corcoran, D. Cumming, A. Duckett, K. El-Koury, D. Haigh, C. Kidd, R. Leah, G. Lewis, C. Matthews, N. Maynard, N. Oishi, T. McColm, R. Trezona, A. Selcuk, M. Schmidt and L. Verdugo, Development of Metal Supported Solid Oxide Fuel Cells for Operation at 500-600 °C, J. Fuel Cell Sci. Technol., 2004, 1(1), p 61–65.

    Article  CAS  Google Scholar 

  14. M.C. Tucker, G.Y. Lau, C.P. Jacobson, L.C. DeJonghe and S.J. Visco, Stability and Robustness of Metal-Supported SOFCs, J. Power Sources, 2008, 175(1), p 447–451.

    Article  CAS  Google Scholar 

  15. W.G. Bessler, A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models, Solid State Ion., 2005, 176(11), p 997–1011.

    Article  CAS  Google Scholar 

  16. A.E. Giannakopoulos, S. Suresh, M. Finot and M. Olsson, Elastoplastic Analysis of Thermal Cycling: Layered Materials with Compositional Gradients, Acta Metall. Mater., 1995, 43(4), p 1335–1354.

    Article  CAS  Google Scholar 

  17. Y. Ohno, Y. Kaga and S. Nagata, A Study on the Fabrication and the Performance of the Solid Electrolyte Fuel Cell, Electr. Eng. Jpn., 1987, 107(1), p 59–67.

    Article  Google Scholar 

  18. Y. Liu, S. Zha and M. Liu, Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs, Chem. Mater., 2004, 16(18), p 3502–3506.

    Article  CAS  Google Scholar 

  19. P. Holtappels, C. Sorof, M.C. Verbraeken, S. Rambert and U. Vogt, Preparation of Porosity-Graded SOFC Anode Substrates, Fuel Cells, 2006, 6(2), p 113–116.

    Article  CAS  Google Scholar 

  20. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308–323.

    Article  CAS  Google Scholar 

  21. R.N. Singh, Sealing Technology for Solid Oxide Fuel Cells (SOFC), Int. J. Appl. Ceram. Technol., 2007, 4(2), p 134–144.

    Article  CAS  Google Scholar 

  22. F. Smeacetto, M. Salvo, M. Ferraris, J. Cho and A.R. Boccaccini, Glass–Ceramic Seal to Join Crofer 22 APU Alloy to YSZ Ceramic in Planar SOFCs, J. Eur. Ceram. Soc., 2008, 28(1), p 61–68.

    Article  CAS  Google Scholar 

  23. J. Puig, A. Prange, B. Arati, C. Laime, P. Lenormand and F. Ansart, Optimization of the Synthesis Route of a Barium Boron Aluminosilicate Sealing Glass for SOFC Applications, Ceram. Int., 2017, 43(13), p 9753–9758.

    Article  CAS  Google Scholar 

  24. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, Structure and Electrical Properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3, Solid State Ion., 1995, 76(3–4), p 273–283.

    Article  CAS  Google Scholar 

  25. M. Mukhopadhyay, J. Mukhopadhyay, A.D. Sharma and R.N. Basu, Ball Mill Assisted Synthesis of Ni–YSZ Cermet Anode by Electroless Technique and Their Characterization, Mater. Sci. Eng. B, 2009, 163(2), p 120–127.

    Article  CAS  Google Scholar 

  26. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour, Metallic Interconnects for SOFC: Characterisation of Corrosion Resistance and Conductivity Evaluation at Operating Temperature of Differently Coated Alloys, J. Power Sources, 2007, 171(2), p 652–662.

    Article  CAS  Google Scholar 

  27. T. Ohno, A. Toji, T. Uehara, G. Bao and S. Imano, Development of Low Thermal Expansion Ni Base Superalloy for Steam Turbine Applications, Energy Mater., 2007, 2(4), p 222–226.

    Article  CAS  Google Scholar 

  28. A. Kumar, A. Jaiswal, M. Sanbui and S. Omar, Scandia Stabilized Zirconia-Ceria Solid Electrolyte (xSc1CeSZ, 5 < x < 11) for IT-SOFCs: Structure and Conductivity Studies, Scr. Mater., 2016, 121, p 10–13.

    Article  CAS  Google Scholar 

  29. J. Martinsen, J.L. Stanton, R.L. Greene, J. Tanaka, B.M. Hoffman and J.A. Ibers, Metal-Spine Conductivity in a Partially Oxidized Metallomacrocycle: (Phthalocyaninato)Cobalt Iodide, J. Am. Chem. Soc., 1985, 107(24), p 6915–6920.

    Article  CAS  Google Scholar 

  30. B. Shri Prakash, S. Senthil Kumar and S.T. Aruna, Properties and Development of Ni/YSZ as an Anode Material in Solid Oxide Fuel Cell: A Review, Renew. Sustain. Energy Rev., 2014, 36, p 149–179.

    Article  CAS  Google Scholar 

  31. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai and Y. Nakamura, Electrical Conductivity of Stabilized Zirconia with Ytterbia and Scandia, Solid State Ion., 1995, 79(1), p 137–142.

    Article  CAS  Google Scholar 

  32. M. Xu, T. Li, M. Yang and M. Andersson, Solid Oxide Fuel Cell Interconnect Design Optimization Considering the Thermal Stresses, Sci. Bull., 2016, 61(17), p 1333–1344.

    Article  Google Scholar 

  33. T.T. Molla, K. Kwok and H.L. Frandsen, Efficient Modeling of Metallic Interconnects for Thermo-Mechanical Simulation of SOFC Stacks: Homogenized Behaviors and Effect of Contact, Int. J. Hydrog. Energy, 2016, 41(15), p 6433–6444.

    Article  CAS  Google Scholar 

  34. T. Shimura, Z. Jiao and N. Shikazono, Dependence of Solid Oxide Fuel Cell Electrode Microstructure Parameters on Focused Ion Beam: Scanning Electron Microscopy Resolution, Int. J. Hydrog. Energy, 2016, 41(47), p 22373–22380.

    Article  CAS  Google Scholar 

  35. Z. Jiao and N. Shikazono, Study on the effects of polarization on local morphological change of nickel at active three-phase-boundary using patterned nickel-film electrode in solid oxide fuel cell anode, Acta Mater., 2017, 135, p 124–131.

    Article  CAS  Google Scholar 

  36. F. Sun, N. Zhang, J. Li and H. Liao, Preparation of Dense Silicate Electrolyte Coating with Low Pressure Plasma Spraying and Very Low Pressure Plasma Spraying for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2013, 223, p 36–41.

    Article  CAS  Google Scholar 

  37. Q.-Y. Chen, X.-Z. Peng, G.-J. Yang, C.-X. Li and C.-J. Li, Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a < 80 kW Shrouded Torch Based on Optical Emission Spectroscopy, J. Therm. Spray Technol., 2015, 24(6), p 1038–1045.

    Article  CAS  Google Scholar 

  38. S.A. Tsipas and I.O. Golosnoy, Effect of Substrate Temperature on the Microstructure and Properties of Thick Plasma-Sprayed YSZ TBCs, J. Eur. Ceram. Soc., 2011, 31(15), p 2923–2929.

    Article  CAS  Google Scholar 

  39. C.-J. Li, G.-J. Yang and C.-X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2012, 22(2–3), p 192–206.

    Google Scholar 

  40. E.-J. Yang, C.-J. Li, G.-J. Yang, C.-X. Li and M. Takahashi, Effect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 coating, IOP Conf. Ser. Mater. Sci. Eng., 2014, 61, p 012022.

    Article  CAS  Google Scholar 

  41. C.-J. Li, X.-J. Ning and C.-X. Li, Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells, Surf. Coat. Technol., 2005, 190(1), p 60–64.

    Article  CAS  Google Scholar 

  42. R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Technol., 2007, 16(3), p 381–403.

    Article  CAS  Google Scholar 

  43. P. Fauchais, A. Vardelle and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44–66.

    Article  CAS  Google Scholar 

  44. G. Antou, G. Montavon, F. Hlawka, A. Cornet and C. Coddet, Characterizations of the Pore-Crack Network Architecture of Thermal-Sprayed Coatings, Mater. Charact., 2004, 53(5), p 361–372.

    Article  CAS  Google Scholar 

  45. F.L. Toma, L.M. Berger, T. Naumann and S. Langner, Microstructures of Nanostructured Ceramic Coatings Obtained by Suspension Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4343–4348.

    Article  CAS  Google Scholar 

  46. S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida and T. Inagaki, Preparation of SOFC Anode Composites by Spray Pyrolysis, J. Eur. Ceram. Soc., 2006, 26(4), p 593–597.

    Article  CAS  Google Scholar 

  47. C.M. An, J.-H. Song, I. Kang and N. Sammes, The Effect of Porosity Gradient in a Nickel/Yttria Stabilized Zirconia Anode for an Anode-Supported Planar Solid Oxide Fuel Cell, J. Power Sources, 2010, 195(3), p 821–824.

    Article  CAS  Google Scholar 

  48. S.-L. Zhang, T. Liu, C.-J. Li, S.-W. Yao, C.-X. Li, G.-J. Yang and M. Liu, Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Mater. Chem. A, 2015, 3(14), p 7535–7553.

    Article  CAS  Google Scholar 

  49. Z. Wang, K. Sun, S. Shen, X. Zhou, J. Qiao and N. Zhang, Effect of Co-Sintering Temperature on the Performance of SOFC with YSZ Electrolyte Thin Films Fabricated by Dip-Coating Method, J. Solid State Electrochem., 2010, 14(4), p 637–642.

    Article  CAS  Google Scholar 

  50. Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao and G. Meng, A High-Performance Ammonia-Fueled SOFC Based on a YSZ Thin-Film Electrolyte, J. Power Sources, 2007, 164(1), p 86–89.

    Article  CAS  Google Scholar 

  51. H.Y. Jung, K.-S. Hong, H. Kim, J.-K. Park, J.-W. Son, J. Kim, H.-W. Lee and J.-H. Lee, Characterization of Thin-Film YSZ Deposited Via EB-PVD Technique in Anode-Supported SOFCs, J. Electrochem. Soc., 2006, 153(6), p A961.

    Article  CAS  Google Scholar 

  52. A.V. Virkar, A Model for Solid Oxide Fuel Cell (SOFC) Stack Degradation, J. Power Sources, 2007, 172(2), p 713–724.

    Article  CAS  Google Scholar 

  53. A. Lussier, S. Sofie, J. Dvorak and Y.U. Idzerda, Mechanism for SOFC Anode Degradation from Hydrogen Sulfide Exposure, Int. J. Hydrog. Energy, 2008, 33(14), p 3945–3951.

    Article  CAS  Google Scholar 

  54. P. Tanasini, M. Cannarozzo, P. Costamagna, A. Faes, J. Van Herle, A. Hessler-Wyser and C. Comninellis, Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes, Fuel Cells, 2009, 9(5), p 740–752.

    Article  CAS  Google Scholar 

  55. F.L. Lowrie and R.D. Rawlings, Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electrolytes, J. Eur. Ceram. Soc., 2000, 20(6), p 751–760.

    Article  CAS  Google Scholar 

  56. A. Faes, A. Nakajo, A. Hessler-Wyser, D. Dubois, A. Brisse, S. Modena and J. Van Herle, RedOx Study of Anode-Supported Solid Oxide Fuel Cell, J. Power Sources, 2009, 193(1), p 55–64.

    Article  CAS  Google Scholar 

  57. L. Liu, G.-Y. Kim and A. Chandra, Modeling of Thermal Stresses and Lifetime Prediction of Planar Solid Oxide Fuel Cell Under Thermal Cycling Conditions, J. Power Sources, 2010, 195(8), p 2310–2318.

    Article  CAS  Google Scholar 

  58. W.G. Bessler, J. Warnatz and D.G. Goodwin, The Influence of Equilibrium Potential on the Hydrogen Oxidation Kinetics of SOFC Anodes, Solid State Ion., 2007, 177(39), p 3371–3383.

    Article  CAS  Google Scholar 

  59. D. Sarantaridis and A. Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cells, 2007, 7(3), p 246–258.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Basic Research Project, Grant No. 2017YFB0306100), the National Key Research and Development Program of China (China-USA Intergovernmental Cooperation Project, Grant No. 2017YFE0105900), and the National Natural Science Foundation of China (Grant No. 91860114). The authors thank Mr. Muhammad Bilal Hanif for his linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, JT., Li, JH., Wang, YP. et al. Performance and Stability of Plasma-Sprayed 10 × 10 cm2 Self-sealing Metal-Supported Solid Oxide Fuel Cells . J Therm Spray Tech 30, 1059–1068 (2021). https://doi.org/10.1007/s11666-021-01171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01171-5

Keywords

Navigation