Skip to main content
Log in

Isothermal and Cyclic Oxidation Behavior of HVOF-Sprayed NiCoCrAlY Coatings: Comparative Investigations on the Conventional and Nanostructured Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Conventional and nanostructured NiCoCrAlY coatings were deposited using the high-velocity oxy-fuel thermal spraying technique. The nanostructured NiCoCrAlY powder feedstock for the coatings was produced by the ball-milling method. The microstructures of the as-received and nanostructured powders as well as their developed coatings were investigated by x-ray diffraction, a field-emission scanning electron microscope equipped with energy-dispersive x-ray spectroscopy, and a transmission electron microscope. Williamson–Hall measurements were also carried out to estimate the crystalline size of the powders and coatings. For the evaluation of the oxidation kinetics, the free-standing coating specimens were subjected to short- and long-term isothermal and cyclic oxidation at 1000 and 1100 °C, respectively, under a laboratory air atmosphere. The results indicated that the as-received NiCoCrAlY coating had parabolic oxidation behavior in short- and long-term exposure tests. For the nanostructured NiCoCrAlY coating, in contrast, the long-term oxidation kinetics deviated from parabolic behavior and showed instead sub-parabolic rate behavior. The obtained results also revealed that the nanostructured NiCoCrAlY coating had greater oxidation resistance to both isothermal and cyclic conditions on account of the formation of a dense and slow-growing Al2O3 layer on the coating surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. D. Naumenko et al., Overview on recent developments of bondcoats for plasma-sprayed thermal barrier coatings, J. Therm. Spray Technol., 2017, 26(8), p 1743-1757

    CAS  Google Scholar 

  2. I. Taie et al., High temperature corrosion resistant coatings for gas flare systems, Ceram. Int., 2018, 44(5), p 5124-5130

    CAS  Google Scholar 

  3. S. Bose, High Temperature Coatings, Butterworth-Heinemann, Oxford, 2017

    Google Scholar 

  4. A. Sayyadi-Shahraki et al., Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites, J. Alloys Compd., 2019, 776, p 798-806

    CAS  Google Scholar 

  5. S. Ghadami, E. Taheri-Nassaj, and H.R. Baharvandi, Novel HfB2-SiC-MoSi2 composites by reactive spark plasma sintering, J. Alloys Compd., 2019, 809, p 151705

    CAS  Google Scholar 

  6. S. Ghadami, H.R. Baharvandi, and F. Ghadami, Influence of the vol% SiC on properties of pressureless Al2O3/SiC nanocomposites, J. Compos. Mater., 2015, 50(10), p 1367-1375

    Google Scholar 

  7. F. Ghadami and A. Sabour Rouh Aghdam, Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments: a critical review, Thin Solid Films, 2019, 678, p 42-52

    CAS  Google Scholar 

  8. W. Brandl et al., The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings, Surf. Coat. Technol., 1997, 94–95, p 21-26

    Google Scholar 

  9. D. Toma, W. Brandl, and U. Köster, The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings, Oxid. Met., 2000, 53(1), p 125-137

    CAS  Google Scholar 

  10. K. Bobzin et al., Development of oxide dispersion strengthened MCrAlY coatings, J. Therm. Spray Technol., 2008, 17(5), p 853-857

    CAS  Google Scholar 

  11. I.M. Allam, D.P. Whittle, and J. Stringer, The oxidation behavior of CoCrAI, systems containing active element additions, Oxid. Met., 1978, 12(1), p 35-66

    CAS  Google Scholar 

  12. V.V. Sobolev and J.M. Guilemany, Oxidation of coatings in thermal spraying, Mater. Lett., 1998, 37(4–5), p 231-235

    CAS  Google Scholar 

  13. L. Ajdelsztajn et al., Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng. A, 2002, 338(1), p 33-43

    Google Scholar 

  14. F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying, Scr. Mater., 2004, 51(1), p 25-29

    CAS  Google Scholar 

  15. S. Saeidi, K.T. Voisey, and D.G. McCartney, The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings, J. Therm. Spray Technol., 2009, 18(2), p 209-216

    CAS  Google Scholar 

  16. X. Hou et al., Fabrication and characterization of NiCoCrAlY coating deposited on nickel-based superalloy substrates, Vacuum, 2018, 155, p 55-59

    CAS  Google Scholar 

  17. W.G. Mao et al., Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures, Int. J. Fract., 2008, 151(2), p 107-120

    CAS  Google Scholar 

  18. H.Y. Qi, X.G. Yang, and R. Li, Interfacial fracture toughness of APS thermal barrier coating under high temperature, Key Eng. Mater., 2007, 348–349, p 181-184

    Google Scholar 

  19. F. Ghadami et al., Effect of vacuum heat treatment on the oxidation kinetics of freestanding nanostructured NiCoCrAlY coatings deposited by high-velocity oxy-fuel spraying, J. Vac. Sci. Technol. A, 2020, 38(2), p 022601

    CAS  Google Scholar 

  20. F. Ghadami et al., Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF, Ceram. Int., 2020, 46(4), p 4556-4567

    CAS  Google Scholar 

  21. S. Ghadami et al., Effect of SiC and MoSi2 in situ phases on the oxidation behavior of HfB2-based composites, Ceram. Int., 2020, 46, p 20299-20305

    CAS  Google Scholar 

  22. D. Mercier, B.D. Gauntt, and M. Brochu, Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings, Surf. Coat. Technol., 2011, 205(17), p 4162-4168

    CAS  Google Scholar 

  23. G. Pulci et al., High temperature oxidation and microstructural evolution of modified MCrAlY coatings, Metall. Mater. Trans. A, 2014, 45(3), p 1401-1408

    CAS  Google Scholar 

  24. B. Saeedi, A. Sabour Rouh Aghdam, and G. Gholami, A study on nanostructured in situ oxide dispersed NiAl coating and its high temperature oxidation behavior, Surf. Coat. Technol., 2015, 276, p 704-713

    CAS  Google Scholar 

  25. Q.M. Wang et al., Thermal shock cycling behavior of NiCoCrAlYSiB coatings on Ni-base superalloys: I. Accelerated oxidation attack, Mater. Sci. Eng. A, 2005, 406(1), p 337-349

    Google Scholar 

  26. P. Zhang et al., Long-term oxidation of MCrAlY coatings at 1000 °C and an Al-activity based coating life criterion, Surf. Coat. Technol., 2017, 332, p 12-21

    CAS  Google Scholar 

  27. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Preparation, characterization and oxidation behavior of CeO2-gradient NiCrAlY coatings applied by HVOF thermal spraying process, Ceram. Int., 2020, 46, p 20500-20509

    CAS  Google Scholar 

  28. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Mechanism of the oxide scale formation in thermally-sprayed NiCoCrAlY coatings modified by CeO2 nanoparticles, Mater. Today Commun., 2020, 24, p 101357

    CAS  Google Scholar 

  29. K. Ma and J.M. Schoenung, Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO, Surf. Coat. Technol., 2011, 205(21), p 5178-5185

    CAS  Google Scholar 

  30. J. Bergholz et al., Fabrication of oxide dispersion strengthened bond coats with low Al2O3 content, J. Therm. Spray Technol., 2017, 26(5), p 868-879

    CAS  Google Scholar 

  31. C. Kaplin and M. Brochu, The effect of grain size on the oxidation of NiCoCrAlY, Appl. Surf. Sci., 2014, 301, p 258-263

    CAS  Google Scholar 

  32. F. Ghadami, S. Ghadami, and H. Abdollah-Pour, Structural and oxidation behavior of atmospheric heat treated plasma sprayed WC-Co coatings, Vacuum, 2013, 94, p 64-68

    CAS  Google Scholar 

  33. F. Ghadami and A. Sabour Rouh Aghdam, Preparation of NiCrAlY/nano-CeO2 powder with the core-shell structure using high-velocity oxy-fuel spraying process, Mater. Chem. Phys., 2020, 243(1), p 122551

    CAS  Google Scholar 

  34. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Abrasive wear behavior of nano-ceria modified NiCoCrAlY coatings deposited by the high-velocity oxy-fuel process, Mater. Res. Express, 2020, 6(12), p 1250d6

    Google Scholar 

  35. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, 1(1), p 22-31

    CAS  Google Scholar 

  36. A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Cleveland, 2002

    Google Scholar 

  37. J. Lu et al., Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium, Corros. Sci., 2019, 153, p 178-190

    CAS  Google Scholar 

  38. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical-milling as feedstock for HVOF spraying deposition, Int. J. Miner. Metall. Mater., 2020, https://doi.org/10.1007/s12613-020-2113-1

    Article  Google Scholar 

  39. M. Tahari, M. Shamanian, and M. Salehi, Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method, J. Alloys Compd., 2012, 525, p 44-52

    CAS  Google Scholar 

  40. Z. Khodsiani, H. Mansuri, and T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina, Powder Technol., 2013, 245, p 7-12

    CAS  Google Scholar 

  41. Z. Horita et al., Development of fine grained structures using severe plastic deformation, Mater. Sci. Technol., 2000, 16(11–12), p 1239-1245

    CAS  Google Scholar 

  42. H. Bakker, G.F. Zhou, and H. Yang, Mechanically driven disorder and phase transformations in alloys, Prog. Mater Sci., 1995, 39(3), p 159-241

    CAS  Google Scholar 

  43. M. Daroonparvar, M.S. Hussain, and M.A.M. Yajid, The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air, Appl. Surf. Sci., 2012, 261, p 287-297

    CAS  Google Scholar 

  44. Q. Zhang et al., Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying, Surf. Coat. Technol., 2008, 202(14), p 3378-3384

    CAS  Google Scholar 

  45. F. Ghadami et al., Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings, Surf. Coat. Technol., 2019, 373, p 7-16

    CAS  Google Scholar 

  46. K.A. Aly et al., Lattice strain estimation for CoAl2O4 nano particles using Williamson–Hall analysis, J. Alloys Compd., 2016, 676, p 606-612

    CAS  Google Scholar 

  47. M.S. Khoshkhoo et al., Grain and crystallite size evaluation of cryomilled pure copper, J. Alloys Compd., 2011, 509, p S343-S347

    CAS  Google Scholar 

  48. R.A. Mahesh, R. Jayaganthan, and S. Prakash, A study on the oxidation behavior of HVOF sprayed NiCrAlY-0.4wt.% CeO2 coatings on superalloys at elevated temperature, Mater. Chem. Phys., 2010, 119(3), p 449-457

    CAS  Google Scholar 

  49. L. Luo et al., A high performance NiCoCrAlY bond coat manufactured using laser powder deposition, Corros. Sci., 2017, 126, p 356-365

    CAS  Google Scholar 

  50. H. Wang et al., Hot corrosion behaviour of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy, Corros. Sci., 2010, 52(10), p 3561-3567

    CAS  Google Scholar 

  51. Y. Wang et al., The effects of ceria on the mechanical properties and thermal shock resistance of thermal sprayed NiAl intermetallic coatings, Intermetallics, 2008, 16(5), p 682-688

    CAS  Google Scholar 

  52. C. Nordhorn et al., Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats, Surf. Coat. Technol., 2014, 258, p 608-614

    CAS  Google Scholar 

  53. X. Sun et al., Mechanical properties and thermal shock resistance of HVOF sprayed NiCrAlY coatings without and with nano ceria, J. Therm. Spray Technol., 2012, 21(5), p 818-824

    CAS  Google Scholar 

  54. K.A. Unocic et al., High-temperature behavior of oxide dispersion strengthening CoNiCrAlY, Mater. High Temp., 2018, 35(1–3), p 108-119

    CAS  Google Scholar 

  55. L. Ajdelsztajn et al., Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings, J. Therm. Spray Technol., 2005, 14(1), p 23-30

    CAS  Google Scholar 

  56. M.J. Lance et al., APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings, Surf. Coat. Technol., 2015, 284, p 9-13

    CAS  Google Scholar 

  57. K.A. Unocic and B.A. Pint, Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating, Surf. Coat. Technol., 2010, 205(5), p 1178-1182

    CAS  Google Scholar 

  58. J. Lu et al., Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation, Corros. Sci., 2019, 159, p 108126

    CAS  Google Scholar 

  59. J. Lu et al., Superior oxidation and spallation resistant NiCoCrAlY bond coat via homogenizing the yttrium distribution, Corros. Sci., 2019, 159, p 108145

    CAS  Google Scholar 

  60. H.E. Evans and M.P. Taylor, Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems, Oxid. Met., 2001, 55(1), p 17-34

    CAS  Google Scholar 

  61. B.N. Popov, Corrosion Engineering: Principles and Solved Problems, Elsevier, Amsterdam, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Ghadami or A. Sabour Rouh Aghdam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadami, F., Sabour Rouh Aghdam, A. & Ghadami, S. Isothermal and Cyclic Oxidation Behavior of HVOF-Sprayed NiCoCrAlY Coatings: Comparative Investigations on the Conventional and Nanostructured Coatings. J Therm Spray Tech 29, 1926–1942 (2020). https://doi.org/10.1007/s11666-020-01111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01111-9

Keywords

Navigation