Skip to main content
Log in

Improvement of Oxidation Resistance and Adhesion Strength of Thermal Barrier Coating by Grinding and Grit-Blasting Treatments

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The formation of thermally grown oxide (TGO), which is composed of alumina and mixed oxides, leads to the delamination of thermal barrier coating (TBC). In this study, to improve the oxidation resistance and adhesion strength of TBCs, grinding and grit-blasting treatments with alumina grits were applied to the surface of the bond-coat (BC) before deposition of the top-coat (TC). These treatments are expected to pre-form an alumina layer as an oxidation barrier and also optimize the TC/BC interfacial roughness. A high-temperature exposure test of TBC specimens grit-blasted with alumina grits of different sizes (B-TBC) revealed the growth of a continuous alumina layer in the B-TBC specimens in contrast to the formation of a complex TGO with alumina and mixed oxides in non-blasted TBC (S-TBC). Moreover, the area and thickness of TGO in the B-TBC specimens were much lower than those in the S-TBC. An indentation test was conducted to evaluate the TC/BC interfacial fracture toughness KIFC which confirmed a significantly higher KIFC of the B-TBC specimens than that of the S-TBC specimen. These results demonstrated that the grinding and grit-blasting treatments are effective in improving the oxidation resistance and adhesion strength of the TBC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.T. DeMasi-Marcin and D.K. Gupta, Protective Coatings in the Gas Turbine Engine, Surf. Coat. Technol., 1994, 68–69, p 1-9

    Article  Google Scholar 

  2. B.C. Wu, E. Chang, S.F. Chang, and D. Tu, Degradation Mechanisms of ZrO2–8 wt% Y2O3/Ni–22Cr–10Al–1Y Thermal Barrier Coatings, J. Am. Ceram. Soc., 1989, 72(2), p 212-218

    Article  CAS  Google Scholar 

  3. K. Ogawa, T. Shoji, H. Aoki, N. Fujita, and T. Torigoe, Mechanistic Understanding for Degraded Thermal Barrier Coatings, JSME Int. J. Ser. A Solid Mech. Mater. Eng., 2000, 44(4), p 507-513

    Article  Google Scholar 

  4. W.R. Chen, E. Irissou, X. Wu, J.G. Legoux, and B.R. Marple, The Oxidation Behavior of TBC with Cold Spray CoNiCrAlY Bond Coat, J. Therm. Spray Technol., 2011, 20(1–2), p 132-138

    Article  CAS  Google Scholar 

  5. M. Daroonparvar, M. Azizi Mat Yajid, N.M. Yusof, and M. Sakhawat Hussain, Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings, J. Nanomater., 2013, 2013, p 1-9

    Google Scholar 

  6. Z. Xu, R. Mu, L. He, and X. Cao, Effect of Diffusion Barrier on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings, J. Alloys Compd., 2008, 466, p 471-478

    Article  CAS  Google Scholar 

  7. Z. Xu, R. Mu, L. He, and X. Cao, Effect of Diffusion Barrier on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings, J. Alloys Compd., 2008, 37(2), p 57-61

    CAS  Google Scholar 

  8. H. Abdeldaim and N. El Mahallawy, The Effect of Sol–Gel Al2O3 Interlayer on Oxidation Behaviour of TBC System, Surf. Coat. Technol., 2018, 350, p 469-479

    Article  CAS  Google Scholar 

  9. Y.J. Chen, S.Q. Liu, X.P. Lin, Z.P. Wang, and L.J. Wang, The Effect of Vacuum Heat Treatment on the Oxidation Behavior of APS Thermal Barrier Coating, Adv. Mater. Res., 2011, 239–242, p 3127-3130

    Article  Google Scholar 

  10. A.C. Karaoglanli, K.M. Doleker, B. Demirel, A. Turk, and R. Varol, Effect of Shot Peening on the Oxidation Behavior of Thermal Barrier Coatings, Appl. Surf. Sci., 2015, 354, p 314-322

    Article  CAS  Google Scholar 

  11. M.F. Bahbou, P. Nylén, and J. Wigren, Effect of Grit Blasting and Spraying Angle on the Adhesion Strength of a Plasma-Sprayed Coating, J. Therm. Spray Technol., 2003, 13(4), p 508-514

    Article  Google Scholar 

  12. Y. Yamazaki, H. Fukanuma, and N. Ohno, Effect of Interfacial Roughness of Bond Coat on the Residual Adhesion Strength of a Plasma Sprayed TBC System after Thermal Cycle Fatigue, J. Solid Mech. Mater. Eng., 2010, 4(2), p 196-207

    Article  Google Scholar 

  13. R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, and X.H. Li, Influence of Interface Roughness on the Fatigue Life of Thermal Barrier Coatings,” 13th International Conference on Fracture 2013, Beijing, China, ICF 2013, 2013, p. 1-10.

  14. W. Nowak, D. Naumenko, G. Mor, F. Mor, D.E. Mack, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Processing Parameters on MCrAlY Bondcoat Roughness and Lifetime of APS–TBC Systems, Surf. Coat. Technol., 2014, 260, p 82-89

    Article  CAS  Google Scholar 

  15. M. Arai, Interfacial Fracture Toughness Evaluation of Ceramic Thermal Barrier Coatings Based on Indentation Test Method, J. Soc. Mater. Sci., 2009, 58(11), p 917-923

    Article  CAS  Google Scholar 

  16. Y. Yamazaki, M. Arai, Y. Miyashita, H. Waki, and M. Suzuki, Determination of Interface Fracture Toughness of Thermal Spray Coatings by Indentation, J. Therm. Spray Technol., 2013, 22(8), p 1358-1365

    Article  Google Scholar 

  17. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678

    Article  CAS  Google Scholar 

  18. M. Mellali, A. Grimaud, A.C. Leger, P. Fauchais, and J. Lu, Alumina Grit Blasting Parameters for Surface Preparation in the Plasma Spraying Operation, J. Therm. Spray Technol., 1997, 6(2), p 217-227

    Article  CAS  Google Scholar 

  19. H.E. Evans and M.P. Taylor, Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems, Oxid. Met., 2001, 55, p 17-34

    Article  CAS  Google Scholar 

  20. K.A. Erk, C. Deschaseaux, and R.W. Trice, Grain-Boundary Grooving of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(5), p 1673-1678

    Article  CAS  Google Scholar 

  21. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  22. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  CAS  Google Scholar 

  23. S. Suresh, Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks, Metall. Trans. A, 1983, 14, p 2375-2385

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.jp) for the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiro Ito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, K., Shima, T., Fujioka, M. et al. Improvement of Oxidation Resistance and Adhesion Strength of Thermal Barrier Coating by Grinding and Grit-Blasting Treatments. J Therm Spray Tech 29, 1728–1740 (2020). https://doi.org/10.1007/s11666-020-01057-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01057-y

Keywords

Navigation