Skip to main content
Log in

Ytterbium Silicate Environmental Barrier Coatings Deposited Using the Solution-Based Precursor Plasma Spray

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Gas turbine efficiency can be improved by increasing the operating temperature and by reducing the need for cooling air, both of which are enabled by higher temperature materials. Silicon carbide based ceramic matrix composites (CMCs) have shown promise for achieving higher temperatures. However, to survive in the high-temperature high-humidity combustion environment, environmental barrier coatings (EBCs) are essential to limit silicon loss of CMCs and its associated damage. Atmospheric plasma spray (APS) is a popular process for making such coatings. In this work, an alternative deposition process is explored, specifically the solution precursor plasma spray (SPPS), where it will be shown for ytterbium monosilicate EBCs that such process directly deposits thin (< 50 μm), dense and crystalline EBC topcoats without annealing of amorphous phases as is needed in the APS process. In addition, the SPPS process allows for quick compensation of system-specific element loss observed in both SPPS and APS processes. Finally, the secondary phase present in EBCs are much smaller in size for the SPPS process and hence less likely to produce cracking compared to APS EBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Steibel, Ceramic Matrix Composites Taking Flight at GE Aviation, Am. Ceram. Soc. Bull., 2019, 98(3), p 32-36 (in English)

    Google Scholar 

  2. E.J. Opila, D.S. Fox, and N.S. Jocobson, Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure, J. Am. Ceram. Soc., 1997, 80(4), p 1009-1012 (in English)

    Article  CAS  Google Scholar 

  3. C.V. Cojocaru, D. Levesque, C. Moreau, and R.S. Lima, Performance of Thermally Sprayed Si/Mullite/BSAS Environmental Barrier Coatings Exposed to Thermal Cycling in Water Vapor Environment, Surf. Coat. Technol., 2013, 216, p 215-223 (in English)

    Article  CAS  Google Scholar 

  4. K.N. Lee and M. van Roode, Environmental Barrier Coatings Enhance Performance of SiC/SiC Ceramic Matrix Composite, Am. Ceram. Soc. Bull., 2019, 98(3), p 48-56 (in English)

    Google Scholar 

  5. B.T. Richards and H.N. Wadley, Plasma Spray Deposition of Tri-layer Environmental Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34(12), p 3069-3083 (in English)

    Article  CAS  Google Scholar 

  6. K.N. Lee, Environmental barrier coatings for SiCf/SiC, in Ceramic Matrix Composites: Materials, Modeling and Technology (American Ceramic Society-Wiley Blackwell, 2014), p 430-451 (in English)

  7. K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.C. Robinson, and N.P. Bansal, Upper Temperature Limit of Environmental Barrier, J. Am. Ceram. Soc., 2003, 86(8), p 1299-1306 (in English)

    Article  CAS  Google Scholar 

  8. K.N. Lee, D.S. Fox, and N.P. Bansal, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, J. Eur. Ceram. Soc., 2005, 25(10), p 1705-1715 (in English)

    Article  CAS  Google Scholar 

  9. J. Felshe, The crystal chemistry of the rare-earth silicate, in Structure and bonding (Springer, Berlin, 1973), p 99-197 (in English)

  10. Z. Tian, L. Zheng, J. Wang, P. Wan, J. Li, and J. Wang, Theoretical and Experimental Determination of the Major Thermo-mechanical Properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for Environmental and Thermal Barrier Coating Applications, J. Eur. Ceram. Soc., 2016, 36(1), p 189-202 (in English)

    Article  CAS  Google Scholar 

  11. H. Klemm, Silicon Nitride for High-Temperature Applications, J. Am. Ceram. Soc., 2010, 93(6), p 1501-1522 (in English)

    Article  CAS  Google Scholar 

  12. B.T. Richards, S. Sehr, F. de Franqueville, M.R. Begley, and H.N.G. Wadley, Fracture Mechanism of Ytterbium Monosilicate Environmental Barrier Coatings During Cyclic Thermal Exposure, Acta Mater., 2016, 103, p 448-460 (in English)

    Article  CAS  Google Scholar 

  13. P. Mechnich, A. Lange, R. Braun, and C. Buttner, Y2SiO5 Coatings Fabricated by RF Magnetron Sputtering, Surf. Coat. Technol., 2013, 237, p 88-94 (in English)

    Article  CAS  Google Scholar 

  14. A. Ito, J. Endo, T. Kimura, and T. Goto, High-Speed Deposition of Y-Si–O Films by Laser Chemical Vapor Deposition Using Nd:YAG Laser, Surf. Coat. Technol., 2010, 204(23), p 3846-3850 (in English)

    Article  CAS  Google Scholar 

  15. J. Liu, L. Zhang, F. Hu, J. Yang, L. Cheng, and Y. Wang, Polymer-Derived Yttrium Silicate Coatings on 2D C/SiC Composites, J. Eur. Ceram. Soc., 2013, 33(2), p 433-439 (in English)

    Article  CAS  Google Scholar 

  16. J.D. Webster, M.E. Westwood, F.H. Hayes, R.J. Day, R. Taylor, A. Duran, M. Aparicio, K. Rebstock, and W.D. Vogel, Oxidation Protection Coatings for C/SiC Based on Yttrium Silicate, J. Eur. Ceram. Soc., 1998, 18(16), p 2345-2350 (in English)

    Article  CAS  Google Scholar 

  17. S. Li, Z. Lu, J. Gao, and Z. Jin, A Study on the Cycling Oxidation Behavior of Mullite-Coated Silicon Carbide, Mater. Chem. Phys., 2003, 78, p 655-659 (in English)

    Article  CAS  Google Scholar 

  18. D.D. Jayaseelan, S. Ueno, T. Ohji, and S. Kanzaki, Sol-Gel Synthesis and Coating of Nanocrystalline Lu2Si2O7 on Si3N4 Substrate, Mater. Chem. Phys., 2004, 84, p 192-195 (in English)

    Article  CAS  Google Scholar 

  19. H. Ryu, S. Lee, Y. Han, K. Choi, G.S. An, S. Nahm, and Y. Oh, Preparation of Crystalline Ytterbium Disilicate Environmental Barrier Coatings Using Suspension Plasma Spray, Ceram. Int., 2019, 45, p 5801-5807 (in English)

    Article  CAS  Google Scholar 

  20. K.N. Lee, R.A. Miller, and N.S. Jacobson, New Generation of Plasma-Sprayed Mullite Coatings on Silicon Carbide, J. Am. Ceram. Soc., 1995, 78(3), p 705-710 (in English)

    Article  CAS  Google Scholar 

  21. Z. Hong, L. Cheng, J. Deng, L. Lu, and Y. Wang, An Investigation of Environmental Barrier Coating on 2D C/SiC Composites Prepared by Liquid Phase Process, J. Inorg. Organomet. Polym Mater., 2012, 22, p 692-698 (in English)

    Article  CAS  Google Scholar 

  22. E.H. Jordan, C. Jiang, and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153-1165 (in English)

    Article  CAS  Google Scholar 

  23. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, X. Ma, J. Roth, T.D. Xiao, and P.E. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65 (in English)

    CAS  Google Scholar 

  24. T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N.P. Padture, Mechansims of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17(9), p 2363-2372 (in English)

    Article  CAS  Google Scholar 

  25. D.Y. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense Alumina-Zirconia Coatings Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91(2), p 359-365 (in English)

    Article  CAS  Google Scholar 

  26. C. Jiang, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, Double-Layer Gadolinium Zirconate/Yttria—Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 895-906 (in English)

    Article  CAS  Google Scholar 

  27. E.H. Jordan, M. Gell, C. Jiang, J. Wang, and B. Nair, High temperature thermal barrier coating made by the solution precursor plasma spray process, Proceedings of the ASME Turbo Expo, 2014, 6, p GT2014-26254 (in English)

  28. M. Gell, J. Wang, R. Kumar, J. Roth, C. Jiang, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2018, 27(4), p 543-555 (in English)

    Article  CAS  Google Scholar 

  29. M. Gell, L. Xie, E.H. Jordan, and N.P. Padture, Mechanisms of Spallation of Solution Precursor Plasma Spray Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 188, p 101-106 (in English)

    Article  Google Scholar 

  30. M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177, p 97-102 (in English)

    Article  Google Scholar 

  31. A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution Precursor Plasma Spray, Mater. Sci. Eng., A, 2005, 405(1), p 313-320 (in English)

    Article  Google Scholar 

  32. L. Xie, E.H. Jordan, N.P. Padture, and M. Gell, Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2004, 381(1), p 189-195 (in English)

    Article  Google Scholar 

  33. D. Chen, M. Gell, E.H. Jordan, E. Cao, and X. Ma, Thermal Stability of Air Plasma Spray and Solution Precursor Plasma Spray Thermal Barrier Coatings, J. Am. Ceram. Soc., 2007, 90(10), p 3160-3166 (in English)

    Article  CAS  Google Scholar 

  34. E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859 (in English)

    Article  CAS  Google Scholar 

  35. A.D. Jadhav and N.P. Padture, Mechanical Properties of Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(20), p 4976-4979 (in English)

    Article  CAS  Google Scholar 

  36. S.R. Shah and R. Rishi, Multilayer Design and Evaluation of a High Temperature Environmental Barrier Coating for Si-Based Ceramics, J. Am. Ceram. Soc., 2007, 90(2), p 516-522 (in English)

    Article  CAS  Google Scholar 

  37. B.T. Richards, K.A. Young, F. de Francqueville, S. Sehr, M.R. Begley, and H.N.G. Wadley, Response of Ytterbium Disilicate—Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor, Acta Mater., 2016, 106, p 1-14 (in English)

    Article  CAS  Google Scholar 

  38. E. Bakan, M. Kindelmann, W. Kunz, H. Klemm, and R. Vassen, High-Velocity Water Vapor Corrosion of Yb-Silicate: Sprayed vs. Sintered Body, Scr. Mater., 2020, 178, p 468-471 ((in English))

    Article  CAS  Google Scholar 

  39. B.T. Richards, H. Zhao, and H.N.G. Wadley, Structure, Composition, and Defect Control During Plasma Spray Deposition of Ytterbium Silicate Coatings, J. Mater. Sci., 2015, 50, p 7939-7957 (in English)

    Article  CAS  Google Scholar 

  40. P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D Appl. Phys., 2013, 46(22), p 224015 ((in English))

    Article  Google Scholar 

  41. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829 (in English)

    Article  CAS  Google Scholar 

  42. E.H. Jordan, M. Gell, P. Bonzani, D. Chen, S. Basu, B.M. Cetegen, F. Wu, and X. Ma, Making dense coatings with the solution precursor plasma spray process, in Thermal Spray 2007: Global Coating Solution (ASM International, Materials Park, 2007), pp. 463–470 (in English)

  43. R. Kumar, C. Jiang, J. Wang, D. Cietek, J. Roth, M. Gell, and E.H. Jordan, Low Thermal Conductivity Yttrium Aluminum Garnet Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray: Part II—Planar Pore Formation and CMAS Resistance, J. Therm. Spray Technol., 2018, 27(5), p 794-808 (in English)

    Article  CAS  Google Scholar 

  44. L. Xie, D. Chen, E.H. Jordan, A. Ozturk, F. Wu, X. Ma, B.M. Cetegen, and M. Gell, Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201(3–4), p 1058-1064 (in English)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation under the Small Business Innovation Research (SBIR) program Award No. IIP-1648225. The authors thank the University of Connecticut Technology Incubation Program (TIP) and Center for Clean Energy Engineering (C2E2) for the support of laboratory and characterization facilities. In addition, valuable contributions of University of Connecticut Professor Dr. Maurice Gell, and the Thermal Spray Lab technician Mr. Jeffrey Roth are also sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cietek, D., Kumar, R. et al. Ytterbium Silicate Environmental Barrier Coatings Deposited Using the Solution-Based Precursor Plasma Spray. J Therm Spray Tech 29, 979–994 (2020). https://doi.org/10.1007/s11666-020-01046-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01046-1

Keywords

Navigation