Skip to main content
Log in

Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Morphology

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The feedstock powder morphology has an important effect on the deposition behavior of cold spray coatings, and this effect is even more significant while spraying cermet coating by the mixture powders. The effect of alumina powder morphology on the deposition efficiency and coatings mechanical properties is investigated in the cold spray deposition of aluminum–alumina cermets. The deposition of aluminum mixed with spherical and angular alumina is studied and compared for six different feedstock powder compositions for each particle morphology. The addition of angular alumina particles in the feedstock powder induces an increase in deposition efficiency followed by a decrease as the alumina content increases beyond a specific value. This effect is not observed when spherical alumina is used. The creation of asperities during deposition was explored for the two alumina powder morphologies, and it was determined that spherical alumina does not produce intricate asperities at the coating surface, explaining the difference in deposition efficiencies. Coatings produced with spherical alumina were harder and showed a greater increase in adhesion strength than coatings produced with angular alumina for similar coating alumina content. These differences are attributed to a larger amount of plastic deformation of the matrix material in coatings sprayed with spherical alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J.R. Tinklepaugh, Cermets, Reinhold Publishing Corporation, New York, 1960

    Google Scholar 

  2. J.L. Ellis and C.G. Goetzel, Cermets, ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990, p 1328

  3. C.P. Bergmann and J. Vicenzi, Protection against Erosive Wear Using Thermal Sprayed Cermet, Climate Change 2013The Physical Science Basis, Springer Berlin Heidelberg, 2011

  4. A. Evans, C. San Marchi, and A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey, Kluwer Academic, Dordrecht, 2003

    Book  Google Scholar 

  5. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, and K.H. Ko, Cold Spray of SiC and Al2O3 with Soft Metal Incorporation: A Technical Contribution, J. Therm. Spray Technol., 2004, 13(2), p 184-189

    Article  Google Scholar 

  6. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, and K.H. Ko, Thin Film Coatings of WO3 by Cold Gas Dynamic Spray: A Technical Note, J. Therm. Spray Technol., 2005, 14(2), p 183-186

    Article  Google Scholar 

  7. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.C. Lau, C.J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  Google Scholar 

  8. J. He, M. Ice, J.M. Schoenung, D.H. Shin, and E.J. Lavernia, Thermal Stability of Nanostructured Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2001, 10(June), p 293-300

    Article  Google Scholar 

  9. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69(9-12), p 2269-2278

    Article  Google Scholar 

  10. X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf., 2015, 8, p 149-162

    Article  Google Scholar 

  11. R. Fernandez and B. Jodoin, Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Technol., 2018, 27(4), p 603-623

    Article  Google Scholar 

  12. R.C.C. Dykhuizen and M.F.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  13. A.O. Tokarev, Structure of Aluminum Powder Coatings Prepared by Cold Gas Dynamic Spraying, Met. Sci. Heat Treat., 1996, 38(3), p 136-139

    Article  Google Scholar 

  14. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Method and Device for Coating, 1995.

  15. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  16. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng., A, 2004, 368(1–2), p 222-230

    Article  Google Scholar 

  17. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, A Method of “Cold” Gas Dynamic Deposition, Sov. Phys. Dokl., 1990, 35(12), p 1047-1049

    Google Scholar 

  18. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

  19. R.C.C. Dykhuizen, M.F.F. Smith, D.L.L. Gilmore, R.A.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  Google Scholar 

  20. T. Samson, D. MacDonald, R. Fernández, and B. Jodoin, Effect of Pulsed Waterjet Surface Preparation on the Adhesion Strength of Cold Gas Dynamic Sprayed Aluminum Coatings, J. Therm. Spray Technol., 2015, 24(6), p 984-993

    Article  Google Scholar 

  21. H. Koivuluoto and P. Vuoristo, Structural Analysis of Cold-Sprayed Nickel-Based Metallic and Metallic-Ceramic Coatings, J. Therm. Spray Technol., 2010, 19(5), p 975-989

    Article  Google Scholar 

  22. E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668

    Article  Google Scholar 

  23. A. Sova, A. Papyrin, and I. Smurov, Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray, J. Therm. Spray Technol., 2009, 18(4), p 633-641

    Article  Google Scholar 

  24. R.G. Maev and E. Leshchinsky, Low Pressure Gas Dynamic Spray: Shear Localization during Particle Shock Consolidation, Thermal Spray 2006: Science, Innovation and Application, 2006.

  25. A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying, J. Therm. Spray Technol., 2006, 15(3), p 382-386

    Article  Google Scholar 

  26. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik, The Influence of Al2O3 Particle Morphology on the Coating Formation and Dry Sliding Wear Behavior of Cold Sprayed Al-Al2O3 Composites, Surf. Coat. Technol., 2015, 270, p 324-333

    Article  Google Scholar 

  27. Y. Wang, B. Normand, N. Mary, M. Yu, and H. Liao, Effects of Ceramic Particle Size on Microstructure and the Corrosion Behavior of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2017, 315, p 314-325

    Article  Google Scholar 

  28. Q. Wang, K. Spencer, N. Birbilis, and M.X. Zhang, The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate, Surf. Coat. Technol., 2010, 205(1), p 50-56

    Article  Google Scholar 

  29. F.S. Da Silva, J. Bedoya, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, and A.V. Benedetti, Corrosion Characteristics of Cold Gas Spray Coatings of Reinforced Aluminum Deposited onto Carbon Steel, Corros. Sci., 2017, 114, p 57-71

    Article  Google Scholar 

  30. I. Finnie and D.H. McFadden, On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence, Wear, 1978, 48(1), p 181-190

    Article  Google Scholar 

  31. E. Sansoucy, P. Marcoux, L. Ajdelsztajn, and B. Jodoin, Properties of SiC-Reinforced Aluminum Alloy Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2008, 202(16), p 3988-3996

    Article  Google Scholar 

  32. W.Y. Li, G. Zhang, H.L. Liao, and C. Coddet, Characterizations of Cold Sprayed TiN Particle Reinforced Al2319 Composite Coating, J. Mater. Process. Technol., 2008, 202(1–3), p 508-513

    Article  Google Scholar 

  33. S.V. Klinkov and V.F. Kosarev, Cold Spraying Activation Using an Abrasive Admixture, J. Therm. Spray Technol., 2012, 21(5), p 1046-1053

    Article  Google Scholar 

  34. G.L. Eesley, A. Elmoursi, and N. Patel, Thermal Properties of Kinetic Spray Al-SiC Metal-Matrix Composite, J. Mater. Res., 2003, 18(04), p 855-860

    Article  Google Scholar 

  35. K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, and A.T. Clare, Cold Sprayed Metal-Ceramic Coatings Using Satellited Powders, Mater. Lett., 2017, 198, p 184-187

    Article  Google Scholar 

  36. B. Aldwell, S. Yin, K.A. McDonnell, D. Trimble, T. Hussain, and R. Lupoi, A Novel Method for Metal-Diamond Composite Coating Deposition with Cold Spray and Formation Mechanism, Scr. Mater., 2016, 115, p 10-13

    Article  Google Scholar 

  37. Y.T.R. Lee, H. Ashrafizadeh, G. Fisher, and A. McDonald, Effect of Type of Reinforcing Particles on the Deposition Efficiency and Wear Resistance of Low-Pressure Cold-Sprayed Metal Matrix Composite Coatings, Surf. Coat. Technol., 2017, 324, p 190-200

    Article  Google Scholar 

  38. P.E. Leger, M. Sennour, F. Delloro, F. Borit, A. Debray, F. Gaslain, M. Jeandin, and M. Ducos, Multiscale Experimental and Numerical Approach to the Powder Particle Shape Effect on Al-Al2O3 Coating Build-Up, J. Therm. Spray Technol., 2017, 26(7), p 1445-1460

    Article  Google Scholar 

  39. M. Yu, W.-Y.Y. Li, X.K.K. Suo, and H.L.L. Liao, Effects of Gas Temperature and Ceramic Particle Content on Microstructure and Microhardness of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2013, 220, p 102-106

    Article  Google Scholar 

  40. M. Yu, X.K.K. Suo, W.Y.Y. Li, Y.Y.Y. Wang, and H.L.L. Liao, Microstructure, Mechanical Property and Wear Performance of Cold Sprayed Al5056/SiCp Composite Coatings: Effect of Reinforcement Content, Appl. Surf. Sci., 2014, 289, p 188-196

    Article  Google Scholar 

  41. C.J. Huang and W.Y. Li, Strengthening Mechanism and Metal/Ceramic Bonding Interface of Cold Sprayed TiNp/Al5356 Deposits, Surf. Eng., 2016, 32(9), p 663-669

    Article  Google Scholar 

  42. K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204(3), p 336-344

    Article  Google Scholar 

  43. A. Sova, V.F. Kosarev, A. Papyrin, and I. Smurov, Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings, J. Therm. Spray Technol., 2011, 20(1–2), p 285-291

    Article  Google Scholar 

  44. Y.X. Wang, H. Yang, G. Lim, and Y. Li, Glass Formation Enhanced by Oxygen in Binary Zr-Cu System, Scr. Mater., 2010, 62(9), p 682-685

    Article  Google Scholar 

  45. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1–2), p 129-135

    Article  Google Scholar 

  46. S. Verajankorva, J. Lagerbom, and P. Vuoristo, Influence of Powder Type and Properties on Ceramic Layer Deposition by Cold Spraying, Thermal Spray 2006 Building on 100 Years Success, 2006, p 2-7

  47. H. Getu, J.K. Spelt, and M. Papini, Conditions Leading to the Embedding of Angular and Spherical Particles during the Solid Particle Erosion of Polymers, Wear, 2012, 292-293, p 159-168

    Article  Google Scholar 

  48. V. Hadavi and M. Papini, Numerical Modeling of Particle Embedment during Solid Particle Erosion of Ductile Materials, Wear, 2015, 342–343, p 310-321

    Article  Google Scholar 

  49. F. Gärtner, C. Borchers, T. Stoltenhoff, H. Kreye, and H. Assadi, Numerical and Microstructural Investigations of the Bonding Mechanisms in Cold Spraying, Therm. Spray Adv. Sci. Appl. Technol., 2003, 2003, p 1-8

    Google Scholar 

  50. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  51. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  52. K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum–Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng., A, 2012, 556, p 114-121

    Article  Google Scholar 

  53. A.C. Hall, D.J. Cook, R.A. Neiser, T.J. Roemer, and D.A. Hirschfeld, The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol., 2006, 15(2), p 233-238

    Article  Google Scholar 

  54. N.M. Melendez, V.V. Narulkar, G.A. Fisher, and A.G. McDonald, Effect of Reinforcing Particles on the Wear Rate of Low-Pressure Cold-Sprayed WC-Based MMC Coatings, Wear, 2013, 306(1–2), p 185-195

    Article  Google Scholar 

  55. Y. Xie, M.P. Planche, R. Raoelison, P. Hervé, X. Suo, P. He, and H. Liao, Investigation on the Influence of Particle Preheating Temperature on Bonding of Cold-Sprayed Nickel Coatings, Surf. Coat. Technol., 2017, 318, p 99-105

    Article  Google Scholar 

  56. K.R. Donner, F. Gaertner, and T. Klassen, Metallization of Thin Al2O3 Layers in Power Electronics Using Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(1-2), p 299-306

    Article  Google Scholar 

  57. A.N. Papyrin, Preface, Cold Spray Technology, A.N. Papyrin, Ed., Elsevier, Amsterdam, 2007

    Google Scholar 

  58. Y. Cormier, P. Dupuis, B. Jodoin, and A. Ghaei, Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray, J. Therm. Spray Technol., 2015, 24(8), p 1549-1565

    Article  Google Scholar 

  59. L. Ajdelsztajn, J.M. Schoenung, B. Jodoin, and G.E. Kim, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36(3), p 657-666

    Article  Google Scholar 

  60. A.P. Sannino and H.J. Rack, Dry Sliding Wear of Discontinuously Reinforced Aluminum Composites: Review and Discussion, Wear, 1995, 189(1), p 1-19

    Article  Google Scholar 

  61. J.A.R. Wesmann, S. Kuroda, and N. Espallargas, The Role of Oxide Tribofilms on Friction and Wear of Different Thermally Sprayed WC-CoCr, J. Therm. Spray Technol., 2017, 26(3), p 492-502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Fernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, R., Jodoin, B. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Morphology. J Therm Spray Tech 28, 737–755 (2019). https://doi.org/10.1007/s11666-019-00845-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00845-5

Keywords

Navigation