Skip to main content
Log in

Characterization and Corrosion Behavior of Functional Gradient Hydroxyapatite Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The aim of the present work is to examine the characterization and corrosion behavior of functional gradient hydroxyapatite coating deposited on titanium-based alloy by plasma spray coating process. The functionally graded coating is designed to provide the crystalline hydroxyapatite at the interface with metallic substrate and the amorphous hydroxyapatite at the outer surface. It is considered that the top amorphous layer of hydroxyapatite has higher bioactivity, and its initial dissolution will lead to bone tissue growth enhancement and bonding, whereas the underneath crystalline hydroxyapatite coating after heat treatment is expected to enhance the long-term stability of coating at the interface with metal. The heat treatment of the underneath as-sprayed coating for crystallization was performed at 700 °C for 1 h. The characterization of the coatings was performed by various techniques such as scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction analysis, surface roughness, and microhardness. It was observed from potentiodynamic scan that heat-treated coating exhibited better dissolution resistance as compared to the as-sprayed coating. Heat treatment of the hydroxyapatite coating resulted in improved crystallinity of the coating which may provide long-term stability to the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.S. Ozyegin, F.N. Oktar, G. Goller, E.S. Kayali, and T. Yazici, Plasma-Sprayed Bovine Hydroxyapatite Coatings, Mater. Lett., 2004, 58, p 2605-2609

    Article  CAS  Google Scholar 

  2. S. Bose and S. Tarafder, Acta Biomaterialia Calcium Phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review, Acta Biomater., 2012, 8(4), p 1401-1421

    Article  CAS  Google Scholar 

  3. S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-Implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng. R, 2009, 66, p 1-70

    Article  Google Scholar 

  4. K. Bazaka, M.V. Jacob, R.J. Crawford, and E.P. Ivanova, Plasma-Assisted Surface Modification of Organic Biopolymers to Prevent Bacterial Attachment, Acta Biomater., 2015, 7(5), p 2015-2028

    Article  Google Scholar 

  5. I. Landor, P. Vavrik, A. Sosna, D. Jahoda, and H. Hahn, Hydroxyapatite Porous Coating and the Osteointegration of the Total Hip Replacement, Arch. Orthop. Trauma Surg., 2007, 127, p 81-89

    Article  Google Scholar 

  6. B. Ben-nissan, A.H. Choi, and A. Bendavid, Surface & Coatings Technology Mechanical Properties of Inorganic Biomedical Thin Films and Their Corresponding Testing Methods, Surf. Coat. Technol., 2013, 233, p 39-48

    Article  CAS  Google Scholar 

  7. A. Arifin, A. Bakar, N. Muhamad, J. Syarif, and M. Ikram, Material Processing of Hydroxyapatite and Titanium Alloy (HA/Ti) Composite as Implant Materials Using Powder Metallurgy: A Review, J. Mater., 2014, 55, p 165-175

    Article  CAS  Google Scholar 

  8. P. Chandran, M. Azzabi, J. Miles, M. Andrews, and J. Bradley, “Furlong Hydroxyapatite-Coated Hip Prosthesis vs the Charnley Cemented Hip Prosthesis, J. Arthroplasty, 2010, 25(1), p 52-57

    Article  Google Scholar 

  9. Z. Guo-liang, W.E.N. Guang-wu, and W.U. Kun, Influence of Processing Parameters and Heat Treatment on Phase Composition and Microstructure of Plasma Sprayed Hydroxyapatite Coatings, Trans. Nonferrous Met. Soc. China, 2009, 19, p 463-469

    Article  Google Scholar 

  10. L. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2003, 360, p 70-84

    Article  Google Scholar 

  11. E.R. Urquia, J.G.C. Wolke, G.V. Kotnur, G.C.A.M. Janssen, J.A. Jansen, and J.J.J.P. Van Den Beucken, Residual Stress Evaluation Within Hydroxyapatite Coatings of Different Micrometer Thicknesses, Surf. Coat. Technol., 2015, 266, p 177-182

    Article  Google Scholar 

  12. R. Kumari and J. Dutta, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4 V) and the Same After Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943

    Article  CAS  Google Scholar 

  13. A. Fukuda et al., Bone Bonding Bioactivity of Ti Metal and Ti-Zr-Nb-Ta Alloys with Ca Ions Incorporated on Their Surfaces by Simple Chemical and Heat Treatments, Acta Biomater., 2011, 7(3), p 1379-1386

    Article  CAS  Google Scholar 

  14. A. Sarkar and S. Kannan, In Situ Synthesis, Fabrication and Rietveld Refinement of the Hydroxyapatite/Titania Composite Coatings on 316 L SS, Ceram. Int., 2014, 40(5), p 6453-6463

    Article  CAS  Google Scholar 

  15. S. Ding, T. Huang, and C. Kao, Immersion Behavior of Plasma-Sprayed Modified Hydroxyapatite Coatings After Heat Treatment, Surf. Coat. Technol., 2003, 165, p 248-257

    Article  CAS  Google Scholar 

  16. M.F. Morks, N.F. Fahim, and A. Kobayashi, Structure, Mechanical Performance and Electrochemical Characterization of Plasma Sprayed SiO2/Ti-Reinforced Hydroxyapatite Biomedical Coatings, Appl. Surf. Sci., 2008, 255(5-II), p 3426-3433

    Article  CAS  Google Scholar 

  17. J.L. Xu et al., Synthesis and Characterization on Atomphospheric Plasma Sprayed Amorphous Silica Doped Hydrxoyapatite Coatings, Surf. Coat. Technol., 2012, 206(22), p 4659-4665

    Article  CAS  Google Scholar 

  18. S. Yugeswaran, A. Kobayashi, A.H. Ucisik, and B. Subramanian, Characterization of Gas Tunnel Type Plasma Sprayed Hydroxyapatite-Nanostructure Titania Composite Coatings, Appl. Surf. Sci., 2015, 347, p 48-56

    Article  CAS  Google Scholar 

  19. M. Mittal, S.K. Nath, and S. Prakash, Improvement in Mechanical Properties of Plasma Sprayed Hydroxyapatite Coatings by Al2O3 Reinforcement, Mater. Sci. Eng. C, 2013, 33(5), p 2838-2845

    Article  CAS  Google Scholar 

  20. G. Singh, S. Singh, and S. Prakash, Surface & Coatings Technology Surface Characterization of Plasma Sprayed Pure and Reinforced Hydroxyapatite Coating on Ti6Al4V Alloy, Surf. Coat. Technol., 2011, 205(20), p 4814-4820

    Article  CAS  Google Scholar 

  21. K. Balani et al., Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and Their Interaction with Human Osteoblasts In Vitro, Biomaterials, 2007, 28(4), p 618-624

    Article  CAS  Google Scholar 

  22. J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29(7), p 2195-2202

    Article  CAS  Google Scholar 

  23. G.A. Fielding, M. Roy, A. Bandyopadhyay, and S. Bose, Antibacterial and Biological Characteristics of Silver Containing and Strontium Doped Plasma Sprayed Hydroxyapatite Coatings, Acta Biomater., 2012, 8(8), p 3144-3152

    Article  CAS  Google Scholar 

  24. A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, and V. Cannillo, Functional Bioactive Glass Topcoats on Hydroxyapatite Coatings: Analysis of Microstructure and In Vitro Bioactivity, Surf. Coat. Technol., 2014, 240, p 110-117

    Article  CAS  Google Scholar 

  25. C. Park, M. Young, L.D. Tijing, H. Beom, N. Soo, and C. Sang, Characterization and Biostability of HA/Ti6Al4V ACL Anchor Prepared by Simple Heat-Treatment, Ceram. Int., 2012, 38(7), p 5385-5391

    Article  CAS  Google Scholar 

  26. C. Lu, H. Huang, C. Chu, and W. Li, The Effects of Heat Treatment Atmosphere on the Bone-Like Apatite Inducement on the Alkali Treated Ti-6Al-4V Surfaces, Procedia Eng., 2012, 36, p 179-185

    Article  CAS  Google Scholar 

  27. C.C. Chen, T.H. Huang, C.T. Kao, and S.J. Ding, Electrochemical Study of the In Vitro Degradation of Plasma-Sprayed Hydroxyapatite/Bioactive Glass Composite Coatings After Heat Treatment, Electrochem. Acta, 2004, 50, p 1023-1029

    Article  CAS  Google Scholar 

  28. H. Ji and P.M. Marquis, Effect of Heat Treatment on the Microstructure of Plasma-Sprayed Hydroxyapatite Coating, Biomaterials, 1993, 14(01), p 64-68

    Article  CAS  Google Scholar 

  29. B.R. Gligorijevi, M. Vilotijevi, Š. Maja, N.S. Vukovi, and N.A. Radovi, Substrate Preheating and Structural Properties of Power Plasma Sprayed Hydroxyapatite Coatings, Ceram. Int., 2016, 42, p 411-420

    Article  Google Scholar 

  30. A. Cattini, D. Bellucci, A. Sola, L. Paw, and V. Cannillo, Surface & Coatings Technology Suspension Plasma Spraying of Optimised Functionally Graded Coatings of Bioactive Glass/Hydroxyapatite, Surf. Coat. Technol., 2013, 236, p 118-126

    Article  CAS  Google Scholar 

  31. Y.P. Lu, G.Y. Xiao, S.T. Li, R.X. Sun, and M. Sen Li, Microstructural Inhomogeneity in Plasma-Sprayed Hydroxyapatite Coatings and Effect Of Post-Heat Treatment, Appl. Surf. Sci., 2006, 252(6), p 2412-2421

    Article  CAS  Google Scholar 

  32. Y.P. Lu, Y.Z. Song, R.F. Zhu, M. Sen Li, and T.Q. Lei, Factors Influencing Phase Compositions and Structure of Plasma Sprayed Hydroxyapatite Coatings During Heat Treatment, Appl. Surf. Sci., 2003, 206(1-4), p 345-354

    Article  CAS  Google Scholar 

  33. A. Singh, G. Singh, and V. Chawla, Influence of Post Coating Heat Treatment on Microstructural, Mechanical and Electrochemical Corrosion Behaviour of Vacuum Plasma Sprayed Reinforced Hydroxyapatite Coatings, J. Mech. Behav. Biomed. Mater., 2018, 85, p 20-36

    Article  CAS  Google Scholar 

  34. Y.-P. Lee, C.-K. Wang, T.-H. Huang, C.-C. Chen, C.-T. Kao, and S. Ding, In Vitro Characterization of Postheat-Treated Plasma-Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2005, 197, p 367-374

    Article  CAS  Google Scholar 

  35. R. Kumari and J. Dutta, Materials Characterization Microstructure and Surface Mechanical Properties of Plasma Spray Deposited and Post Spray Heat Treated Hydroxyapatite (HA) Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate, Mater. Charact., 2017, 131(June), p 12-20

    Article  CAS  Google Scholar 

  36. A. Singh, G. Singh, and V. Chawla, Characterization and Mechanical Behavior of Reinforced Hydroxyapatite Coatings Deposited by Vacuum Plasma Spray on SS-316L Alloy, J. Mech. Behav. Biomed. Mater., 2018, 79, p 273-282

    Article  CAS  Google Scholar 

  37. G. Singh, H. Singh, and B. Singh, Corrosion Behavior of Plasma Sprayed Hydroxyapatite and Hydroxyapatite-Silicon Oxide Coatings on AISI, 304 for Biomedical Application, Appl. Surf. Sci., 2013, 284, p 811-818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge UGC for providing RGNF Scholarship wide letter No.: RGNF-2013-14-SC-PUN-52049. The authors also gratefully acknowledge DST, New Delhi, for Providing Research Facilities at Yadavindra College of Engineering, Punjabi University Guru Kashi Campus, Talwandi Sabo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarnail Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Chatha, S.S. & Singh, H. Characterization and Corrosion Behavior of Functional Gradient Hydroxyapatite Coating. J Therm Spray Tech 27, 1371–1380 (2018). https://doi.org/10.1007/s11666-018-0802-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0802-3

Keywords

Navigation