Skip to main content
Log in

Features of Coatings Obtained by Supersonic Laser Deposition

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The three types of coatings that can be deposited by supersonic laser deposition, namely coatings built without the melting of the processed powder particles, coatings built from molten particles and coatings made from molten particles and with solid particles embedded in the coating, are discussed. For instance, with no melting of the powder material, a titanium alloy coating without transformation of the structure and with a uniform distribution of the chemical elements in the coating cross-section was obtained. Self-fluxing coatings (NiCrCBSiFe) with high hardness were achieved by melting the powder and mixing it with the substrate. The mixing of the coating metal with the substrate metal led to a significant increase in the concentration of the main alloying elements in the coating–substrate interface. X-ray diffraction analysis also showed that the mixing of the NiCrCBSiFe coating with a medium-carbon steel substrate led to the formation of new FexNi phases, while their concentration decreased through coating thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.P. Alkhimov, S.V. Klinkon, V.F. Kosarev, and A.N. Papyrin, Gasdynamicspraying. Study Plane Supersonic Two-Phase Jet, J. Appl. Mech. Tech. Phys., 1977, 38(2), p 177

    Google Scholar 

  2. F. Luo, A. Cockburn, D. Cai, M. Sparks, Y. Lu, C. Ding, R. Langford, W. O’Neill, J. Yao, and R. Liu, Simulation Analysis of Stellite 6®Particle Impact on Steel Substrate in Supersonic Laser Deposition Process, J. Therm. Spray Technol., 2015, 24(3), p 378-393

    Article  CAS  Google Scholar 

  3. F. Luo, A. Cockburn, R. Lupoi, M. Sparkes, and W. O’Neill, Performance Comparison of Stellite 6 Deposited on Steel Using Supersonic Laser Deposition and Laser Cladding, Surf. Coat. Technol., 2012, 212, p 119-127

    Article  CAS  Google Scholar 

  4. F. Luo, R. Lupoi, A. Cockburn, M. Sparkes, and W. O’Neill, Characteristics of Stellite 6 Deposited by Supersonic Laser Deposition Under Optimized Parameters, J. Iron. Steel Res. Int., 2013, 20(2), p 52-57

    Article  Google Scholar 

  5. J. Yao, Z. Li, B. Li, L. Yang, and J. Yaoet, Characteristics and Bonding Behavior of Stellite 6 Alloy Coating Processed with Supersonic Laser Deposition, J. Alloys Compd., 2016, 661, p 526-534

    Article  CAS  Google Scholar 

  6. H. Ren, X. Tian, D. Liu, J. Liu, and H. Wang, Microstructural Evolution and Mechanical Properties of Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25, p 1856-1864

    Article  CAS  Google Scholar 

  7. R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Powder Rep., 2006, 61, p 30-37

    Article  Google Scholar 

  8. S.H. Zahiri, C.L. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium Via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209, p 922-929

    Article  CAS  Google Scholar 

  9. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined By a Multi-Scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265

    Article  CAS  Google Scholar 

  10. R.S. Lima, A. Kucuk, C.C. Berndt, J. Karthikeyan, C.M. Kay, and J. Lindeman, Deposition Efficiency, Mechanical Properties and Coating Roughness in Cold-Sprayed Titanium, J. Mater. Sci. Lett., 2002, 21, p 1687-1689

    Article  CAS  Google Scholar 

  11. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15, p 263-272

    Article  CAS  Google Scholar 

  12. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84

    Article  CAS  Google Scholar 

  13. M. Tewolde, G. Fu, D.J. Hwang, L. Zuo, S. Sampath, and J.P. Longtin, Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining, J. Therm. Spray Technol., 2016, 25(3), p 431-440

    Article  CAS  Google Scholar 

  14. R.C. Seshadri, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements, J. Therm. Spray Technol., 2016, 25(8), p 1666-1683

    Article  Google Scholar 

  15. R. Lupoi, M. Sparkes, A. Cockburn, and W. O’Neill, High Speed Titanium Coatings by Supersonic Laser Deposition, Mater. Lett., 2011, 65, p 3205-3207

    Article  CAS  Google Scholar 

  16. N. Bala, H. Singh, and S. Prakash, Performance of Cold Sprayed Ni Based Coatings in Actual Boiler Environment, Surf. Coat. Technol., 2017, 318(25), p 50-61

    Article  CAS  Google Scholar 

  17. W. Sun, A.W.Y. Tan, N.W. Khun, I. Marinescu, and E. Liua, Effect of Substrate Surface Condition on Fatigue Behavior of Cold Sprayed Ti6Al4V Coatings, Surf. Coat. Technol., 2017, 320(25), p 452-457

    Article  CAS  Google Scholar 

  18. R. Singh, K.-H. Rauwald, E. Wessel, G. Mauer, S. Schruefer, A. Barthd, S. Wilson, and R. Vassena, Effects of Substrate Roughness and Spray-Angle on Deposition Behavior of Cold-Sprayed Inconel 718, Surf. Coat. Technol., 2017, 319, p 249-259

    Article  CAS  Google Scholar 

  19. F. Luo, A. Cockburn, M. Sparkes, R. Lupoi, Z. Chen, W. O’Neill, J. Yao, and R. Liu, Performance Characterization of Ni60-WC Coating on Steel Processed with Supersonic Laser Deposition, Def. Technol., 2015, 11, p 35-47

    Article  Google Scholar 

  20. Y. Zhou, G. Ma, and H. Wang, Microstructures and Tribological Properties of Fe-Based Amorphous Metallic Coatings Deposited via Supersonic Plasma Spraying, J. Therm. Spray Technol., 2017, 26(6), p 1257-1267

    Article  CAS  Google Scholar 

  21. A.I. Gorunov and A.K. Gilmutdinov, Investigation of Coatings of Austenitic Steels Produced by Supersonic Laser Deposition, Opt. Laser Technol., 2017, 88, p 157-165

    Article  CAS  Google Scholar 

  22. J.H. Yao, L.J. Yang, B. Li, Q.L. Zhang, and Z.H. Li, Deposition Characteristics and Microstructure of a Ni60-Ni Composite Coating Produced by Supersonic Laser Deposition, Lasers Eng., 2017, 36(1-3), p 117-131

    CAS  Google Scholar 

  23. J. Yao, L. Yang, B. Li, Z. Li, and J. Yaoet, Characteristics and Performance of Hard Ni60 Alloy Coating Produced with Supersonic Laser Deposition Technique, Mater. Design, 2015, 83, p 26-35

    Article  CAS  Google Scholar 

  24. L. Yang, B. Li, J. Yao, Z. Li, and L. Yanget, Effects of Diamond Size on the Deposition Characteristic and Tribological Behavior of Diamond/Ni60 Composite Coating Prepared By Supersonic Laser Deposition, Diam. Relat. Mater., 2015, 58, p 139-148

    Article  CAS  Google Scholar 

  25. B. Li, J. Yao, Q. Zhang, Z. Li, and L. Yanget, Microstructure and Tribological Performance of Tungsten Carbide Reinforced Stainless Steel Composite Coatings By Supersonic Laser Deposition, Surf. Coat. Technol., 2015, 275, p 58-68

    Article  CAS  Google Scholar 

  26. L. Yuan, F. Luo, J. Yao, L. Yuan, and F. Luo, Deposition Behavior At Different Substrate Temperatures by Using Supersonic Laser Deposition, J. Iron Steel Res. Int., 2013, 20(10), p 87-93

    Article  Google Scholar 

  27. M. Jones, A. Cockburn, R. Lupoi, M. Sparkes, and W. O’Neill, Solid-State Manufacturing of Tungsten Deposits Onto Molybdenum Substrates with Supersonic Laser Deposition, Mater. Lett., 2014, 134, p 295-297

    Article  CAS  Google Scholar 

  28. V.I. Kalita, V.V. Yarkin, V.P. Bagmutov, S.N. Parshev, I.N. Zakharov, A.V. Kasimtsev, G.U. Lubman, D.I. Komlev, and V.I. Mamonov, Formation of Coatings with Nanostructures and Amorphous Structures, Russ. Metall. (Metally), 2007, 2007(6), p 534-539

    Article  Google Scholar 

Download references

Acknowledgment

The author acknowledges support from the Ministry of Education of the Russian Federation for supporting the research Project No 9.3236.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.I. Gorunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorunov, A. Features of Coatings Obtained by Supersonic Laser Deposition. J Therm Spray Tech 27, 1194–1203 (2018). https://doi.org/10.1007/s11666-018-0748-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0748-5

Keywords

Navigation