Skip to main content

Advertisement

Log in

The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.N. Rahaman, W. Xiao, Y. Liu, and B. Sonny Bal, Osteoconductive and Osteoinductive Implants Composed of Hollow Hydroxyapatite Microspheres, in Advances in Bioceramics and Porous Ceramics VII: 38th International Conference on Advanced Ceramics and Composites, eds. by R. Narayan, and P. Colombop, 27–31 Jan 2014(Daytona Beach, Florida) (American Ceramic Society and ACerS’s Engineering Ceramics Division, 2014)

  2. B. Locardi, U.E. Pazzaglia, C. Gabbi, and B. Profilo, Thermal Behaviour of Hydroxyapatite Intended for Medical Applications, Biomaterials, 1993, 14(6), p 437-441

    Article  Google Scholar 

  3. S.V. Dorozhkin, Calcium Orthophosphate-Based Biocomposites and Hybrid Biomaterials, J. Mater. Sci., 2009, 44(9), p 2343-2387

    Article  Google Scholar 

  4. Y.C. Yang and C.Y. Yang, Mechanical and Histological, Evaluation of a Plasma Sprayed Hydroxyapatite Coating on a Titanium Bond Coat, Ceram. Int., 2003, 29(6), p 6509-6516

    Google Scholar 

  5. R.B. Heimann, Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings, Surf. Coat. Technol., 2013, 233, p 27-28

    Article  Google Scholar 

  6. M.F. Hasan, J. Wang, and C. Berndt, Evaluation of the Mechanical Properties of Plasma Sprayed Hydroxyapatite Coatings, Appl. Surf. Sci., 2014, 303, p 155-162

    Article  Google Scholar 

  7. H.P. Li, Q.Y. Zhao, B. Li, J.L. Kang, Z.Y. Yu, Y.X. Li, X.Q. Song, C.Y. Liang, and H.S. Wang, Fabrication and Properties of Carbon Nanotube-Reinforced Hydroxyapatite Composites by a Double in Situ Synthesis Process, Carbon, 2016, 101, p 159-167

    Article  Google Scholar 

  8. V. Kosma, T. Tsoufis, T. Koliou, A. Kazantzis, K. Beltsios, J.T.M. De Hosson, and D. Gournis, Fibrous Hydroxyapatite-Carbon Nanotube Composites by Chemical Vapor Deposition. In Situ Fabrication, Structural and Morphological Characterization, Mater. Sci. Eng. B, 2013, 178(7), p 457-464

    Article  Google Scholar 

  9. E. Mohseni, E. Zalnezhad, A.R. Bushroa, A.M. Hamouda, B.T. Goh, and G.H. Yoon, Ti/TiN/HA Coating on Ti-6Al-4V for Biomedical Applications, Ceram. Int., 2015, 41(10), p 14447-14457

    Article  Google Scholar 

  10. A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, and J.L. Ong, A Study on Functionally Graded HA Coatings Processed Using Ion Beam Assisted Deposition with in Situ Heat Treatment, Surf. Coat. Technol., 2006, 200(20–21), p 6111-6116

    Article  Google Scholar 

  11. I.-S. Lee, B.H. Zhao, G.-H. Lee, S.-H. Choi, and S.-M. Chung, Industrial Application of Ion Beam Assisted Deposition on Medical Implants, Surf. Coat. Technol., 2007, 201(9–11), p 5132-5137

    Article  Google Scholar 

  12. C.X. Wang, Z.Q. Chen, L.M. Guan, M. Wang, Z.Y. Liu, and P.L. Wang, Fabrication and Characterization of Graded Calcium Phosphate Coatings Produced by Ion Beam Sputtering/Mixing Deposition, Nucl. Instrum. Methods B, 2001, 179(3), p 365-372

    Article  Google Scholar 

  13. H.-C. Choe, W.-G. Kim, and Y.-H. Jeong, Surface Characteristics of HA Coated Ti-30Ta-xZr and Ti-30Nb-xZr Alloys after Nanotube Formation, Surf. Coat. Technol., 2010, 205, p s305-s311

    Article  Google Scholar 

  14. Y.-H. Jeong, H.-C. Choe, and S.-W. Eun, Hydroxyapatite Coating on the Ti-35Nb-xZr Alloy by Electron Beam-Physical Vapor Deposition, Thin Solid Films, 2011, 519(20), p 7050-7056

    Article  Google Scholar 

  15. H.-C. Choe, Photofunctionalization of EB-PVD HA-Coated Nano-pore Surface of Ti-30Nb-xZr Alloy for Dental Implants, Surf. Coat. Technol., 2013, 228, p s470-s476

    Article  Google Scholar 

  16. H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, and M. Javidi, Hydroxyapatite Coating on NiTi Shape Memory Alloy by Electrophoretic Deposition Process, Surf. Coat. Technol., 2012, 208, p 57-63

    Article  Google Scholar 

  17. M. Javidi, S. Javadpour, M.E. Bahrololoom, and J. Ma, Electrophoretic Deposition of Natural Hydroxyapatite on Medical Grade 316 L Stainless Steel, Mater. Sci. Eng. C, 2008, 28(8), p 1509-1515

    Article  Google Scholar 

  18. E. Karimi, J. Khalil-Allafi, and V. Khalili, Electrophoretic Deposition of Double-Layer HA/Al Composite Coating on NiTi, Mater. Sci. Eng. C, 2016, 58, p 882-890

    Article  Google Scholar 

  19. L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater. Sci., 2007, 52(1), p 1-61

    Article  Google Scholar 

  20. J.C. Huang, Y.J. Ni, and Z.C. Wang, Preparation of Hydroxyapatite Functionally Gradient Coating on Titanium Substrate using a Combination of Electrophoretic Deposition and Reaction Bonding Process, Surf. Coat. Technol., 2010, 204(21–22), p 3387-3392

    Article  Google Scholar 

  21. D.G. Wang, C.Z. Chen, J. Ma, and T. He, Microstructure Evolution of Sol–Gel HA Films, Appl. Surf. Sci., 2011, 257(7), p 2592-2598

    Article  Google Scholar 

  22. H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, and H.E. Kim, Hydroxyapatite Coating on Titanium Substrate with Titania Buffer Layer Processed by Sol–Gel Method, Biomaterials, 2004, 25(13), p 2533-2538

    Article  Google Scholar 

  23. X.L. Zeng, J.F. Li, S.H. Yang, Q.X. Zheng, and Z.W. Zou, Preparation of Artificial Canine Femoral Stem with HA-Ti Ladder-Type Coating on Plasma-Sprayed Pure Ti Substrate and its Performance Evaluation, Appl. Surf. Sci., 2012, 258(10), p 4489-4496

    Article  Google Scholar 

  24. H.C. Gledhill, I.G. Turner, and C. Doyle, In Vivo Fatigue Behaviour of Vacuum Plasma and Detonation Gun Sprayed Hydroxyapatite Coatings, Biomaterials, 2001, 22(11), p 1233-1240

    Article  Google Scholar 

  25. H.C. Gledhill, I.G. Turner, and C. Doyle, Direct Morphological Comparison of Vacuum Plasma Sprayed and Detonation Gun Sprayed Hydroxyapatite Coatings for Orthopaedic Applications, Biomaterials, 1999, 20(4), p 315-322

    Article  Google Scholar 

  26. K.A. Khor, H. Li, and P. Cheang, Significance of Melt-Fraction in HVOF Sprayed Hydroxyapatite Particles, Splats and Coatings, Biomaterials, 2004, 25(7–8), p 1177-1186

    Article  Google Scholar 

  27. K.A. Khor, H. Li, P. Cheang, and S.Y. Boey, In Vitro Behavior of HVOF Sprayed Calcium Phosphate Splats and Coatings, Biomaterials, 2003, 24(5), p 723-735

    Article  Google Scholar 

  28. H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155(1), p 21-32

    Article  Google Scholar 

  29. V. Deram, C. Minichiello, R.N. Vannier, A.L. Maguer, L. Pawlowski, and D. Murano, Microstructural Characterizations of Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2003, 166(2–3), p 153-159

    Article  Google Scholar 

  30. L.M. Sun, C.C. Berndt, and C.P. Grey, Phase, Structure and Microstructural Investigation of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2003, 360(1–2), p 70-84

    Article  Google Scholar 

  31. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasma Sprayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55

    Article  Google Scholar 

  32. Y.M. Wang, X.M. Liu, T.T. Fan, Z. Tan, Z. Zhou, and D.Y. He, In Vitro Evaluation of Hydroxyapatite Coating with (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Sci. Eng. C, 2017, 75, p 596-601

    Article  Google Scholar 

  33. Y.M. Wang, T.T. Fan, Z. Zhou, and D.Y. He, Hydroxyapatite Coating with Strong (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Lett., 2016, 185, p 484-487

    Article  Google Scholar 

  34. L. Zhao, K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider, Study on the Influence of Plasma Spray Processes and Spray Parameter on the Structure and Crystallinity of Hydroxyapatite Coatings, Materialwiss, 2006, 37(6), p 516-520

    Article  Google Scholar 

  35. M.R.T. Filgueiras, D. Mkhonto, and N.H. de Leeuw, Computer Simulations of the Adsorption of Citric Acid at Hydroxyapatite Surfaces, J. Cryst. Growth, 2006, 294(1), p 60-68

    Article  Google Scholar 

  36. S. Dyshlovenko, B. Pateyron, L. Pawlowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 179(1), p 110-117

    Article  Google Scholar 

  37. E. Lugscheider, K. Bobzin, L. Zhao, and J. Zwick, Assessment of the Microplasma Spraying Process for Coating Application, Adv. Eng. Mater., 2006, 8(7), p 635-639

    Article  Google Scholar 

  38. Y. Wang, Y. Bai, J.J. Tang, Y.H. Wang, K. Liu, S.W. Guo, and Z.H. Han, A transmission Electron Microscopy Study of the Microstructure and Interface of Zirconia-based Thermal Barrier Coatings, J. Alloys Compd., 2015, 619, p 820-825

    Article  Google Scholar 

  39. T.W. Clyne and Y.C. Tsui, The Effect of Intermediate Layers on Residual Stress Distributions and Debonding of Sprayed Thermal Barrier Coatings, FGM, 1995, 94, p 129-136

    Google Scholar 

  40. K.M. Kh and K.M. Kh, Handbook of Thermodynamic Constants of Inorganic and Organic Compounds, Ann Arbor-Humphrey Science Publishers, Ann Arbor, 1970

    Google Scholar 

  41. S. Serrano-Zabaleta, M.A. Laguna-Bercero, L. Ortega-San-Martín, and A. Larrea, Orientation Relationships and Interfaces in Directionally Solidified Eutectics for Solid Oxide Fuel Cell Anodes, J. Eur. Ceram. Soc., 2014, 34(9), p 2123-2132

    Article  Google Scholar 

  42. I. Iordanova and K.S. Forcey, Texture and Residual Stresses in Thermally Sprayed Coatings, Surf. Coat. Technol., 1997, 91(3), p 174-182

    Article  Google Scholar 

  43. M. Inagaki and T. Kameyama, Phase Transformation of Plasma-sprayed Hydroxyapatite Coating with Preferred Crystalline Orientation, Biamaterials, 2007, 28(19), p 2923-2931

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (51471010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-mei Liu or Ding-yong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xm., He, Dy., Wang, Ym. et al. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying. J Therm Spray Tech 27, 667–679 (2018). https://doi.org/10.1007/s11666-018-0698-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0698-y

Keywords

Navigation