Skip to main content
Log in

Abrasive-Erosive Wear of Thermally Sprayed Coatings from Experimental and Commercial Cr3C2-Based Powders

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, high-velocity oxy-fuel sprayed coatings from experimental Cr3C2-Ni powder produced by mechanically activated thermal synthesis and disintegrator milling are compared with coatings from commercial Cr3C2-NiCr powder under room- and elevated-temperature abrasive-erosive wear (AEW) conditions. In a room-temperature AEW test, the coating made from the experimental powder had wear rates that were 1.1-5.3 times higher than the coating from the commercial powder; this difference was the lowest at the highest impact velocity (80 m s−1). Under AEW tests at elevated temperature (300 and 550 °C), the coating made from the experimental powder exhibited wear rates that were 1.2-2.8 times higher in comparison with that made from the commercial powder, but this difference was smaller under an oblique impact angle (30°) and higher temperature conditions. The reasons for the lower resistance against AEW of the coating made from the experimental powder were found to be its lower ability to resist plastic indentation and deformation as well as lower indentation fracture toughness at room temperature, weaker bonding between the matrix and reinforcement and probably lower mechanical properties as well as unfavourable residual stresses at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.-F. Wang and Z.-G. Yang, Finite Element Model of Erosive Wear on Ductile and Brittle Materials, Wear, 2008, 265(5-6), p 871-878

    Article  Google Scholar 

  2. K.G. Budinksi, Solid Particle Erosion Testing with a Gas-Jet Apparatus, in Proc. STLE Annu. Meet. Exhib., May 5-9, 2013 (Detroit, the USA), p 10-12

  3. J.R. Davis, Ed., Applications for Thermal Spray Processing, Handbook of Thermal Spray Technology, 1st ed., ASM International, Materials Park, 2004, p 171-174

  4. J. Zhang, Z. Han, W. Yin, H. Wang, C. Ge, and J. Jiang, Numerical Experiment of the Solid Particle Erosion of Bionic Configuration Blade of Centrifugal Fan, Acta Metall. Sin. Engl. Lett., 2013, 26(1), p 16-24

    Article  Google Scholar 

  5. M.M. Trabulsi, Black Powder in Sales-Gas Transmission Pipelines, J. Pipeline Eng., 2007, 6, p 245-250

    Google Scholar 

  6. C.B. Solnordal, C.Y. Wong, and J. Boulandger, An Experimental and Numerical Analysis of Erosion Caused by Sand Pneumatically Conveyed Through a Standard Pipe Elbow, Wear, 2015, 336(337), p 43-57

    Article  Google Scholar 

  7. P.N. Walsh, J.M. Quets, and R.C. Tucker, Coatings for The Protection of Turbine Blades from Erosion, J. Eng. Gas Turbines Power, 1995, 117(1), p 152-155

    Article  Google Scholar 

  8. K. Brun, M. Nored, and R. Kurz, Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines, J. Eng. Gas Turbines Power, 2012, 134(1), p 012402

    Article  Google Scholar 

  9. G. Stachowiak and A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, Oxford, 2013, p 525-576

    Google Scholar 

  10. E. Bousser, L. Martinu, and J.E. Klemberg-Sapieha, Solid Particle Erosion Mechanisms of Hard Protective Coatings, Surf. Coat. Technol., 2013, 235, p 383-393

    Article  Google Scholar 

  11. G. Wang, X. Jia, J. Li, F. Li, Z. Liu, and B. Gang, Current State and Development of the Research on Solid Particle Erosion and Repair of Turbomachine Blades, Re-engineering Manufacturing for Sustainability, A.Y.C. Nee, B. Song, and S.-K. Ong, Eds., Springer, Singapore, 2013, p 633-638

    Chapter  Google Scholar 

  12. D. Wang, Z. Tian, L. Shen, Z. Liu, and Y. Huang, Effects of Laser Remelting on Microstructure and Solid Particle Erosion Characteristics of ZrO2-7 wt.% Y2O3 Thermal Barrier Coating Prepared by Plasma Spraying, Ceram. Int., 2014, 40(6), p 8791-8799

    Article  Google Scholar 

  13. E. Bousser, L. Martinu, and J.E. Klemberg-Sapieha, Solid Particle Erosion Mechanisms of Protective Coatings for Aerospace Applications, Surf. Coat. Technol., 2014, 257, p 165-181

    Article  Google Scholar 

  14. I. Finnie, Erosion of Surfaces by Solid Particles, Wear, 1960, 3, p 87-103

    Article  Google Scholar 

  15. D.A. Woodford, R.T. Wood, Effect of particle size and hardness on materials erosion in fluidized beds, in Proceedings of the Sixth International Conference on Erosion by Liquid and Solid Impact, J.E. Field and N.S. Corney, Eds., Sept 5-8, 1983 (Cambridge, UK), Cavendish Laboratory, University of Cambridge, p 56.1-56.9

  16. M.M. Stack and D. Peña, Particle Size Effects on the Elevated Temperature Erosion Behaviour of Ni-Cr/WC MMC-Based Coatings, Surf. Coat. Technol., 1999, 113, p 5-12

    Article  Google Scholar 

  17. M. Antonov, R. Veinthal, E. Huttunen-Saarivirta, I. Hussainova, A. Vallikivi, M. Lelis, and J. Priss, Effect of Oxidation on Erosive Wear Behaviour of Boiler Steels, Tribol. Int., 2013, 68, p 35-44

    Article  Google Scholar 

  18. S. Matthews, B. James, and M. Hyland, High Temperature Erosion-Oxidation of Cr3C2-NiCr Thermal Spray Coatings under Simulated Turbine Conditions, Corros. Sci., 2013, 70, p 203-211

    Article  Google Scholar 

  19. J.B. Cheng, X.B. Liang, Y.X. Chen, Z.H. Wang, and B.S. Xu, High-Temperature Erosion Resistance of FeBSiNB Amorphous Coatings Deposited by Arc Spraying for Boiler Applications, J. Therm. Spray Technol., 2013, 22(5), p 820-827

    Article  Google Scholar 

  20. H. Arabnejad, A. Mansouri, S.A. Shirazi, and B.S. McLauri, Development of Mechanistic Erosion Equation for Solid Particles, Wear, 2015, 332-333, p 1044-1050

    Article  Google Scholar 

  21. K. Szymański, A. Hernas, G. Moskal, and H. Myalska, Thermally Sprayed Coatings Resistant to Erosion and Corrosion for Power Plant Boilers—A Review, Surf. Coat. Technol., 2015, 268, p 153-164

    Article  Google Scholar 

  22. A.S. Praveen, J. Sarangan, S. Suresh, and J. Siva Subramanian, Erosion Wear Behaviour of Plasma Sprayed NiCrSiB/Al2O3 Composite Coating, Int. J. Refract. Met. Hard Mater., 2015, 52, p 209-218

    Article  Google Scholar 

  23. D.A.J. Ramm, T.W. Clyne, A.J. Sturgeon, and S. Dunkerton, Correlations between Spraying Conditions and Microstructure for Alumina Coatings Produced by HVOF and VPS, Thermal spray industrial applications, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1994, p 239-243

    Google Scholar 

  24. V. Matikainen, K. Niemi, H. Koivuluoto, and P. Vuoristo, Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings, Coatings, 2014, 4(1), p 18-36

    Article  Google Scholar 

  25. L.-X. Cai, J.-R. Mao, S.-S. Wang, J. Di, and Z.-P. Feng, Experimental Investigation on Erosion Resistance of Iron Boride Coatings for Steam Turbines at High Temperatures, Proc. Inst. Mech. Eng. Part J, 2015, 229(5), p 636-645

    Article  Google Scholar 

  26. S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High-Temperature Behaviour of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler, J. Therm. Spray Technol., 2013, 22(5), p 838-847

    Article  Google Scholar 

  27. V. Pokhmurski, M. Student, V. Gvozdeckii, T. Stypnutskyy, O. Student, B. Wielage, and H. Pokhmurska, Arc-Sprayed Iron-Based Coatings for Erosion-Corrosion Protection of Boiler Tubes at Elevated Temperatures, J. Therm. Spray Technol., 2013, 22(5), p 808-819

    Article  Google Scholar 

  28. H.J. Kim, Y.G. Kweoun, and R.W. Chang, Wear and Erosion Behaviour of Plasma-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 1994, 3(2), p 169-178

    Article  Google Scholar 

  29. S. Matthews and L.-M. Berger, Long-Term Compositional/Microstructural Development of Cr3C2-NiCr Coatings at 500 °C, 700 °C and 900 °C, Int. J. Refract. Met. Hard Mater., 2016, 59, p 1-18

    Article  Google Scholar 

  30. S. Matthews, B. James, and M. Hyland, The Role of Microstructure in the Mechanism of High Velocity Erosion of Cr3C2-NiCr Thermal Spray Coatings: Part 1 - As-Sprayed Coatings, Surf. Coat. Technol., 2009, 203(8), p 1086-1093

    Article  Google Scholar 

  31. L. Thakur and N. Arora, Solid Particle Erosion Behaviour of WC-CoCr Nanostructured Coating, Tribol. Trans., 2013, 56(5), p 781-788

    Article  Google Scholar 

  32. M. Manjunatha, R.S. Kulkarni, and M. Krishna, Investigation of HVOF Thermal Sprayed Cr3C2-NiCr Cermet Carbide Coatings on Erosive Performance of AISI 316 Molybdenum Steel, Proced. Mater. Sci., 2014, 5, p 622-629

    Article  Google Scholar 

  33. A. Surzhenkov, P. Kulu, R. Tarbe, V. Mikli, H. Sarjas, and J. Latokartano, Wear Resistance of Laser Remelted Thermally Sprayed Coatings, Est. J. Eng., 2009, 15(4), p 318-328

    Article  Google Scholar 

  34. A. Surženkov, D. Goljandin, R. Traksmaa, M. Viljus, K. Talviste, A. Aruniit, J. Latokartano, and P. Kulu, High-Temperature Erosion Wear of Cermet Particles Reinforced Self-Fluxing Alloy Matrix HVOF Sprayed Coatings, Mater. Sci. (Medžiagotyra), 2015, 21(3), p 386-390

    Google Scholar 

  35. A. Surzhenkov, M. Antonov, D. Goljandin, P. Kulu, M. Viljus, R. Traksmaa, and A. Mere, High-Temperature Erosion of Fe-Based Coatings Reinforced with Cermet Particles, Surf. Eng., 2016, 32(8), p 624-630

    Article  Google Scholar 

  36. H. Sarjas, P. Kulu, K. Juhani, M. Viljus, V. Matikainen, and P. Vuoristo, Wear Resistance of HVOF Sprayed Coatings from Mechanically Activated Thermally Synthesized Cr3C2-Ni Spray Powder, Proc. Est. Acad. Sci., 2016, 65(2), p 101-106

    Article  Google Scholar 

  37. I. Hussainova, J. Kübarsepp, and J. Pirso, Mechanical Properties and Features of Erosion of Cermets, Wear, 2001, 250(1-2), p 818-825

    Article  Google Scholar 

  38. H. Sarjas, P. Kulu, K. Juhani, and P. Vuoristo, Novel WC-Co Spray Powders and HVOF Sprayed Coatings on Their Basis, in Proceedings of 28th International Conference on Surface Modification Technologies, T.S. Sudarsan, P. Vuoristo, and H. Koivuluoto, Eds., June 16-18, 2014 (Tampere, Finland), Valardoc, 2014, p 35-42

  39. R. Ren, Z. Yang, L.L. Shaw, A Novel Process for Synthesizing Nanostructured Carbides: Mechanically Activated Synthesis, in Ceramic Engineering and Science Proceedings, 19(4), D.E. Bray, Ed., Jan. 20-24, 1998 (Cocoa Beach, FL, the USA), John Wiley & Sons, 1998, p 461-468

  40. J. Pirso, M. Viljus, S. Letunovitš, and K. Juhani, Reactive Carburizing Sintering—A Novel Production Method for High Quality Chromium Carbide-Nickel Cermets, Int. J. Refract. Met. Hard Mater., 2006, 24(3), p 263-270

    Article  Google Scholar 

  41. Z.-G. Ban and L.L. Shaw, Characterization of Thermal Sprayed Nanostructured WC-Co Coatings Derived from Nanocrystalline WC-18 wt.% Co powders, J. Therm. Spray Technol., 2003, 12(1), p 112-119

    Article  Google Scholar 

  42. M. Jõeleht, J. Pirso, K. Juhani, M. Viljus, and R. Traksmaa, The Formation of Reactive Sintered (Ti, Mo)C-Ni Cermet from Nanocrystalline Powders, Int. J. Refract. Met. Hard Mater., 2014, 43, p 284-290

    Article  Google Scholar 

  43. P. Peetsalu, S. Zimakov, J. Pirso, V. Mikli, R. Tarbe, and P. Kulu, Technology and Characterization of Composite Thermal Spray Powders, Mater. Sci. (Medžiagotyra), 2005, 11(4), p 385-389

    Google Scholar 

  44. D.K. Shetty and I.G. Wright, Indentation Fracture of WC-Co Cermets, J. Mater. Sci., 1985, 20, p 1873-1883

    Article  Google Scholar 

  45. M. Antonov, I. Hussainova, J. Pirso, and O. Volobueva, Assessment of Mechanically Mixed Layer Developed during High Temperature Erosion of Cermets, Wear, 2007, 263(7-12), p 878-886

    Article  Google Scholar 

  46. M. Antonov, J. Pirso, A. Vallikivi, D. Goljandin, and I. Hussainova, The Effect of Fine Erodent Retained on the Surface During Erosion of Metals, Ceramics, Plastic, Rubber and Hardmetal, Wear, 2016, 354-355, p 53-68

    Article  Google Scholar 

  47. D.L. Joslin and W.C. Oliver, A New Method for Analysing Data from Continuous Depth-Sensing Microindentation Tests, J. Mater. Res., 1990, 5(1), p 123-126

    Article  Google Scholar 

  48. T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, and I.G. Brown, Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Discs, Materials Research Society Symposium Proceedings, Vol 383, D.B. Bogy, M.S. Donley, M.D. Drory, and J.E. Field, Eds., 1995, p 447-452

  49. I. Hussainova, J. Jasiuk, M. Sardela, and M. Antonov, Micromechanical Properties and Erosive Wear Performance of Chromium Carbide Based Cermets, Wear, 2009, 267(1-4), p 152-159

    Article  Google Scholar 

  50. R.J.K. Wood, J.C. Walker, T.J. Harvey, S. Wang, and S.S. Rajahram, Influence of Microstructure on the Erosion and Erosion-Corrosion Characteristics of 316 Stainless Steel, Wear, 2013, 306(1-2), p 254-262

    Article  Google Scholar 

  51. I. Kleis and P. Kulu, Solid Particle Erosion. Occurrence, Prediction and Control, Springer, London, 2008, p 134-156

    Google Scholar 

  52. A.V. Levi, Solid Particle Erosion and Erosion-Corrosion of Materials, ASM International, Materials Park, 1995, p 35-60

    Google Scholar 

  53. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  54. I. Hussainova, Effect of Microstructure on the Erosive Wear of Titanium Carbide-Based Cermets, Wear, 2003, 255(1-6), p 121-128

    Article  Google Scholar 

  55. P. Kulu, I. Hussainova, and R. Veinthal, Solid Particle Erosion of Thermal Spray Coatings, Wear, 2005, 258(1-4), p 488-496

    Article  Google Scholar 

  56. I. Hussainova, On Micromechanical Problems of Erosive Wear of Particle Reinforced Composites, Proc. Estonian Acad. Sci. Eng., 2005, 11(1), p 46-58

    Google Scholar 

  57. M.M. Stack and F.H. Stott, An Approach to Modelling Erosion-Corrosion of Alloys Using Erosion-Corrosion Maps, Corros. Sci., 1993, 35(5-8), p 1027-1034

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dmitri Goljandin, Ph.D., for his help with the manufacture of the experimental Cr3C2-Ni powder and Deniss Tšernobajev, M.Sc., for his help with the wear tests. This work was supported by the Institutional Research Funding IUT19-29 “Multi-Scale Structured Ceramic-Based Composites for Extreme Applications” of the Estonian Ministry of Education and Research and by the base funding provided to R&D institutions by the Estonian Ministry of Education and Research, Project Number B56, “Innovative Polycrystalline Diamond (PDC) Drag Bit for Soft Ground Tunnel Boring Machines”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Surzhenkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarjas, H., Surzhenkov, A., Juhani, K. et al. Abrasive-Erosive Wear of Thermally Sprayed Coatings from Experimental and Commercial Cr3C2-Based Powders. J Therm Spray Tech 26, 2020–2029 (2017). https://doi.org/10.1007/s11666-017-0638-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0638-2

Keywords

Navigation