Skip to main content

Advertisement

Log in

Crystal-Structure-Based Modeling Study of Temperature-Dependent Fracture Toughness for Brittle Coating Deposited on Ductile Substrate

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The temperature-dependent fracture toughness of a brittle coating/ductile substrate system, WC-10Co4Cr deposited on 1018 low carbon steel, is evaluated at microscopic level using an indentation-based model in terms of the Arrhenius-type equation and rate-controlling theory. The formulation of the model utilizes the parameters of crystal structures of each phase in the coating material. The slip systems of hard hexagonal \( \updelta \)-WC phase and soft FCC \( \upalpha \)-Co phase are analyzed. The fracture toughness of the two-phase coating is obtained by integrating the fracture toughness of single \( \updelta \)-WC phase coating and that of single \( \upalpha \)-Co phase coating using either the basic mixture method or the unconstrained mixture method. The results suggest that the fracture toughness of WC-10Co4Cr coating/1018 low carbon steel substrate system may remain constant until the temperature reaches a critical value, about 200 K, and ranges from 2.16 to 10.82 \( {\text{MPa}}\;{\text{m}}^{1/2} \), with temperature increasing from room temperature (298 K) to 1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. X.K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Frac. Mech., 2012, 85, p 1-46

    Article  Google Scholar 

  2. B.R. Lawn, A.G. Evans, and D.B. Marshall, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc., 1980, 63(9–10), p 574-581

    Article  Google Scholar 

  3. K. Niihara, A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramics, J. Mater. Sci. Lett., 1983, 2, p 221-223

    Article  Google Scholar 

  4. S. Smith and R. Scattergood, Crack-Shape Effects for Indentation Fracture Toughness Measurements, J. Am. Ceram. Soc., 1992, 75(2), p 305-315

    Article  Google Scholar 

  5. B.D. Beake, M. Garcia, and J.F. Smith, Micro-Impact Testing: A New Technique for Investigating Fracture Toughness, Thin Solid Films, 2001, 398–399, p 438-443

    Article  Google Scholar 

  6. X. Wang, C.J. Wang, and A. Atkinson, Interface Fracture Toughness in Thermal Barrier Coatings by Cross-Sectional Indentation, Acta Mater., 2012, 60, p 6152-6163

    Article  Google Scholar 

  7. N.H. Faisal, J.A. Steel, R. Ahmed, and R.L. Reuben, The Use of Acoustic Emission to Characterize Fracture Behavior during Vickers Indentation of HVOF Thermally Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2009, 18(4), p 525-535

    Article  Google Scholar 

  8. S. Houdkova and M. Kasparova, Experimental Study of Indentation Fracture Toughness in HVOF Sprayed Hardmetal Coatings, Eng. Frac. Mech., 2013, 110, p 468-476

    Article  Google Scholar 

  9. B. Bozzini and M. Boniardi, A Model for the Evaluation of Indentation Crack Arrest Fracture Toughness of Supported Films, J. Mater. Sci., 2001, 36, p 511-518

    Article  Google Scholar 

  10. D. Chicot, G. Duarte, A. Tricoteaux, B. Jorgowski, A. Leriche, and J. Lesage, Vickers Indentation Fracture (VIF) Modeling to Analyze Multi-Cracking Toughness of Titania, Alumina and Zirconia Plasma Sprayed Coatings, Mater. Sci. Eng. A, 2009, 527, p 65-76

    Article  Google Scholar 

  11. A. Roman, D. Chicot, and J. Lesage, Indentation Tests to Determine the Fracture Toughness of Nickel Phosphorus, Surf. Coat. Technol., 2002, 155, p 161-168

    Article  Google Scholar 

  12. E. Amar and A. Pineau, Interpretation of Ductile Fracture Toughness Temperature Dependence of a Low Strength Steel in Terms of a Local Approach, Eng. Frac. Mech., 1985, 22(6), p 1061-1071

    Article  Google Scholar 

  13. B.Z. Margolin, A.G. Gulenko, V.A. Nikolaev, and L.N. Ryadkov, A New Engineering Method for Prediction of the Fracture Toughness Temperature Dependence for RPV Steels, Int. J. Press. Vess. Pip., 2003, 80(12), p 817-829

    Article  Google Scholar 

  14. T. Smida, J. Babjak, and I. Dlouhy, Prediction of Fracture Toughness Dependence from Tensile Test Parameters, Metall. Mater., 2010, 48(6), p 354-361

    Google Scholar 

  15. G. Qian, T. Nakamura, C.C. Berndt, and S.H. Leigh, Tensile Toughness Test and High Temperature Fracture Analysis of Thermal Barrier Coatings, Acta Mater., 1997, 45(4), p 1767-1784

    Article  Google Scholar 

  16. D. Wu and Y.C. Zhou, Interface Fracture Toughness of TBCs at High Temperature. Proceedings of the 11th International Conference on Fracture, Turin, Italy, 2005, p 1976-1981

  17. M. Watanabe, T. Okabe, A. Enoki, and T. Kishi, Evaluation of in situ Fracture Toughness of Ceramic Coatings at Elevated Temperature by AE Inverse Analysis, Sci. Technol. Adv. Mater., 2003, 4(2), p 205-212

    Article  Google Scholar 

  18. L.M. Berger, P. Ettmayer, P. Vuoristo, T. Mäntylä, and W. Kunert, Microstructure and Properties of WC-10%Co-4%Cr Spray Powders and Coatings: Part 1. Powder Characterization, J. Therm. Spray Technol., 2001, 10, p 311-325

    Article  Google Scholar 

  19. M. Yandouzi, L. Ajdelsztajn, and B. Jodoin, WC-Based Composite Coatings Prepared by the Pulsed Gas Dynamic Spraying Process: Effect of the Feedstock Powders, Surf. Coat. Technol., 2008, 202, p 3866-3877

    Article  Google Scholar 

  20. A.S. Kurlov and A.I. Gusev, Tungsten Carbides and W-C Phase Diagram, Inorgan. Mater., 2006, 42, p 121-127

    Article  Google Scholar 

  21. A.S. Kurlov and A.I. Gusev, Phases and Equilibria in the W-C and W-Co-C Systems, Properties and Application in Hardmetals, Springer Series in Materials Science, Vol 184, Springer International Publishing, Switzerland, 2013, p 5-56

  22. K. Ishida and T. Nishizawa, The Co-Cr (Cobalt-Chromium) System, Bull. Alloy Phase Diag., 1990, 11, p 357-370

    Article  Google Scholar 

  23. S. Hong, Y. Wu, Y. Zheng, B. Wang, W. Gao, and J. Lin, Microstructure and Electrochemical Properties of Nanostructured WC-10Co-4Cr Coating Prepared by HVOF Spraying, Surf. Coat. Technol., 2013, 235, p 582-588

    Article  Google Scholar 

  24. D. Mari, B. Clausen, M.A.M. Bourke, and K. Buss, Measurement of Residual Thermal Stress in WC-Co by Neutron Diffraction, Int. J. Refrac. Metal. Hard Mater., 2009, 27, p 282-287

    Article  Google Scholar 

  25. B.H. Kim and D.S. Suhr, Characteristics of HVOF-Sprayed WC-Co Cermet Coatings Affected by WC Particle Size and Fuel/Oxygen Ratio, Mater. Trans., 2001, 42(5), p 833-837

    Article  Google Scholar 

  26. X.J. Liu, R. Kainuma, I. Ohnuma, K. Ishida, and K. Oikawa, The Use of Phase Diagrams and Thermodynamic Databases for Electronic Materials, JOM, 2003, 55, p 53-59

    Article  Google Scholar 

  27. G.J. Dickins, A.M.B. Douglas, and W.H. Taylor, The Crystal Structure of the Co-Cr σ Phase, Acta Crystall., 1956, 9, p 297-303

    Article  Google Scholar 

  28. J.D. Bolton and M. Redington, Plastic Deformation Mechanisms in Tungsten Carbide, J. Mater. Sci., 1980, 15, p 3150-3156

    Article  Google Scholar 

  29. V. Jayaram, Plastic Incompatibility and Crack Nucleation during Deformation on Four Independent Slip Systems in Tungsten Carbide-Cobalt, Acta Metall., 1987, 35, p 1307-1315

    Article  Google Scholar 

  30. S.B. Luyckx, Slip System of Tungsten Carbide Crystals at Room Temperature, Acta Metall., 1970, 18, p 233-236

    Article  Google Scholar 

  31. M.K. Hibbs and R. Sinclair, Room-Temperature Deformation Mechanisms and the Defect Structure of Tungsten Carbide, Acta Metall., 1981, 29, p 1645-1654

    Article  Google Scholar 

  32. M. Bľanda, A. Duszová, T. Csanádi, P. Hvizdoš, F. Lofaj, and J. Dusza, Indentation Fatigue of WC Grains in WC-Co Composite, J. Eur. Ceram. Soc., 2014, 34, p 3407-3412

    Article  Google Scholar 

  33. R. Bauer, E.A. Jägle, W. Baumann, and E.J. Mittemeijer, Kinetics of the Allotropic hcp–fcc Phase Transformation in Cobalt, Philos. Mag., 2011, 91, p 435-457

    Article  Google Scholar 

  34. H. Wei and Y. Wei, Interaction between a Screw Dislocation and Stacking Faults in fcc Metals, Mater. Sci. Eng. A, 2012, 541, p 38-44

    Article  Google Scholar 

  35. M.M. Myshlyaev, Intersection of Screw Dislocations in fcc Crystals during Torsional Deformation, Doklady Phys., 2012, 57, p 107-109

    Article  Google Scholar 

  36. W.A. Jesser and J.W. Matthews, Growth of F.C.C. Cobalt on Nickel, Acta Metall., 1968, 16, p 1307-1311

    Article  Google Scholar 

  37. G.R. Irwin and J.W. Matthews, Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl. Mech., 1957, 24, p 361-364

    Google Scholar 

  38. J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35, p 379-386

    Article  Google Scholar 

  39. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc Versus bcc Metals, Mater. Sci. Eng. A, 2004, 381, p 71-79

    Article  Google Scholar 

  40. K.S. Chan, Relationships of Fracture Toughness and Dislocation Mobility in Intermetallics, Metall. Mater. Trans. A, 2003, 34(10), p 2315-2328

    Article  Google Scholar 

  41. P.J. Burnett and D.S. Rickerby, The Mechanical Properties of Wear-Resistant Coatings: I: Modelling of Hardness Behavior, Thin Solid Films, 1987, 148, p 41-50

    Article  Google Scholar 

  42. R.F. Cook and G.M. Pharr, Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics, J. Am. Ceram. Soc., 1990, 73, p 787-817

    Article  Google Scholar 

  43. N.V. Demidova, X.J. Wu, and R. Liu, A Fracture Toughness Model for Brittle Coating on Ductile Substrate under Indentation Loading, Eng. Frac. Mech., 2012, 82, p 17-28

    Article  Google Scholar 

  44. K. Durst, B. Backes, and M. Göken, Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone, Scr. Mater., 2005, 52, p 1093-1097

    Article  Google Scholar 

  45. S. Lay, J.L. Chermant, and J. Vicens, Plasticity of WC Materials by T.E.M. Investigations, Deformation of Ceramic Materials II., Vol 18, R.E. Tressler and R.C. Bradt, Eds., Springer, USA, 1984, p 87-96

  46. M. Freels, P.K. Liaw, L. Jiang, and D.L. Klarstrom, Cobalt Alloys and Composites, Advanced Structural Materials: Properties, Design Optimization, and Applications, W.O. Soboyejo and T.S. Srivatsan, Eds., CRC Press, Boca Raton, 2007, p 187-224

  47. H.W. Hugosson, O. Eriksson, U. Jansson, A.V. Ruban, P. Souvatzis, and I.A. Abrikosov, Surface Energies and Work Functions of the Transition Metal Carbides, Surf. Sci., 2004, 557, p 243-254

    Article  Google Scholar 

  48. M. Alden, S. Mirbt, H.L. Skriver, N.M. Rosengaard, and B. Johansson, Surface Magnetism in Iron, Cobalt, and Nickel, Phys. Rev. B, 1992, 46, p 6303-6312

    Article  Google Scholar 

  49. K.S. Chan, Alloying Effects on Fracture Mechanisms in Nb-Based Intermetallic in-Situ Composites, Mater. Sci. Eng. A, 2002, 329–331, p 513-522

    Article  Google Scholar 

  50. F.L. Zhang, C.Y. Wang, and M. Zhu, Nanostructured WC/Co Composite Powder Prepared by High Energy Ball Milling, Scr. Mater., 2003, 49, p 1123-1128

    Article  Google Scholar 

  51. T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger, and A.R. Rosen, Particle-Size, Size Distribution and Dislocations in Nanocrystalline Tungsten-Carbide, Nanostruct. Mater., 1999, 11, p 103-113

    Article  Google Scholar 

  52. K.S. Chan and D.L. Davidson, Delineating Brittle-Phase Embrittlement and Ductile-Phase Toughening in Nb-Based in-Situ Composites, Metall. Mater. Trans. A, 2001, 32(11), p 2717-2727

    Article  Google Scholar 

  53. A.F. Bower and M. Ortiz, A Three-Dimensional Analysis of Crack Trapping and Bridging by Tough Particles, J. Mech. Phys. Solids, 1991, 39(6), p 815-858

    Article  Google Scholar 

  54. J.R. Pickens and J. Gurland, The Fracture Toughness of WC-Co Alloys Measured on Single-Edge Notched Beam Specimens Precracked by Electron Discharge Machining, Mater. Sci. Eng., 1978, 33, p 135-142

    Article  Google Scholar 

  55. S.R. Lampman, N. Dimatteo, and ASM International. Handbook Committee, Fracture Mechanics, Damage Tolerance, and Life Assessment, Fatigue and Fracture, Vol 19, ASM International, USA, 1996, p 911-1475

  56. E.L. Cantera and B.G. Mellor, Fracture Toughness and Crack Morphologies in Eroded WC-Co-Cr Thermally Sprayed Coatings, Mater. Lett., 1998, 37, p 201-210

    Article  Google Scholar 

  57. R.J.K. Wood, Tribology of Thermal Sprayed WC–Co Coatings, Inter. J. Refrac. Metal. Hard Mater., 2010, 28, p 82-94

    Article  Google Scholar 

  58. A. Karimpoor, High Strength Nanocrystalline Cobalt with High Tensile Ductility, Scr. Mater., 2003, 49, p 651-656

    Article  Google Scholar 

  59. P. Chivavibul, M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura, Effect of Powder Characteristics on Properties of Warm-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2009, 19, p 81-88

    Article  Google Scholar 

  60. D.J. Siegel, L.G. Hector, Jr., and J.B. Adams, Adhesion, Stability, and Bonding at Metal/Metal-Carbide Interfaces: Al/WC, Surf. Sci., 2002, 498, p 321-336

    Article  Google Scholar 

  61. A.A. Gnidenko, First Principle Simulation of the Co Layers Behavior on a Surface of Hexagonal Tungsten Carbide, Phys. Procedia, 2012, 23, p 132-135

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from Natural Science and Engineering Research Council of Canada (NSERC), the in-kind support from National Research Council Canada (NRC) and both financial and in-kind support from Kennametal Satellite Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Chen, K., Liu, R. et al. Crystal-Structure-Based Modeling Study of Temperature-Dependent Fracture Toughness for Brittle Coating Deposited on Ductile Substrate. J Therm Spray Tech 25, 1344–1356 (2016). https://doi.org/10.1007/s11666-016-0452-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0452-2

Keywords

Navigation