Skip to main content
Log in

The Effect of Extrusion Ratio on the Discharge and Corrosion Behavior of Mg-3Al-2.8Y-0.7Mn Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the impact of extrusion ratio (ER: 10, 16, and 25) on the electrochemical behaviors and discharge performances of Mg-3Al-2.8Y-0.7Mn (wt.%) alloys was investigated. The results indicate that an increase in extrusion ratio contributes to the homogeneous distribution of second phases and improves corrosion resistance. Notably, a higher extrusion ratio (ER25) enables the alloy anode to have the highest proportion of prismatic-oriented grains, leading to improved discharge activity and enhanced shedding of discharge products. Consequently, this alloy exhibits the highest and most stable voltage. At a current density of 20 mA cm−2, the ER25 anode demonstrates a cell voltage of 1.32 V, discharge capacity of 1170.37 mAh g−1, and anode efficiency of 53.60%. These findings underscore the influence of the extrusion ratio on microstructural features and electrochemical performance, highlighting the potential for optimizing magnesium-air battery anodes through controlled processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. H.F. Wang and Q. Xu, Materials Design for Rechargeable Metal-Air Batteries, Matter, 2019, 1(3), p 565–595.

    Article  CAS  Google Scholar 

  2. H. Liu, Y. Yan, X. Wu, H. Fang et al., Effects of Al and Sn on Microstructure, Corrosion Behavior and Electrochemical Performance of Mg–Al-Based Anodes for Magnesium-Air Batteries, J. Alloys Compd., 2021, 859, p 157755.

    Article  CAS  Google Scholar 

  3. F.E. Shangguan, W.L. Cheng, Y.H. Chen, H. Yu, L.F. Wang, H. Li, and J.H. Wang, Elucidating the Dependence Of Electrochemical Behavior and Discharge Performance on the Grain Structure of lean Mg-03 Bi-03 Ag-03 In Anodes in Primary Mg-Air Battery, J. Power. Sources, 2023, 564, p 232856.

    Article  CAS  Google Scholar 

  4. M. Yuasa, X. Huang, K. Suzuki et al., Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power. Sources, 2015, 297, p 449–456.

    Article  CAS  Google Scholar 

  5. M. Deng, D. Höche, S.V. Lamaka et al., Mg-Ca Binary Alloys as Anodes for Primary Mg-Air Batteries, J. Power. Sources, 2018, 396, p 109–118.

    Article  CAS  Google Scholar 

  6. N. Wang, R. Wang, Y. Feng et al., Discharge and Corrosion Behaviour of Mg-Li-Al-Ce-Y-Zn Alloy as the Anode for Mg-Air Battery, Corros. Sci., 2016, 112, p 13–24.

    Article  CAS  Google Scholar 

  7. S. Cheng, W. Cheng, X. Gu et al., Discharge Properties of Low-Alloyed Mg-Bi-Ca Alloys as Anode Materials for Mg-Air Batteries: Influence of Ca Alloying, J. Alloys Compd., 2020, 823, p 153779.

    Article  CAS  Google Scholar 

  8. N. Wang, R. Wang, C. Peng et al., Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-In Alloys as Anodes for Mg-Air Battery, Electrochim. Acta, 2014, 149, p 193–205.

    Article  CAS  Google Scholar 

  9. J. Sha, M. Qiao, J. Bao et al., Improving the Electrochemical Behaviors and Discharge Performance of As-Rolled Mg-4Li Alloys through Multicomponent Alloying, J. Alloys Compd., 2022, 895, p 162536.

    Article  CAS  Google Scholar 

  10. W. Huang, Z. Jiang, P. Wu et al., Tailoring the Electrochemical Behavior and Discharge Performance of Mg-Al-Ca-Mn Anodes for Mg-Air Batteries by Different Extrusion Ratios, J. Mater. Res. Technol., 2024, 28, p 3494–3506.

    Article  CAS  Google Scholar 

  11. Y. Feng, G. Lei, Y. He et al., Discharge Performance of Mg-Al-Pb-La Anode for Mg-Air Battery, Trans. Nonferrous Met. Soc. China, 2018, 28(11), p 2274–2286.

    Article  CAS  Google Scholar 

  12. Y. Liu, W. Cheng, X. Gu et al., Tailoring the Microstructural Characteristic and Improving the Corrosion Resistance of Extruded Dilute Mg–0.5Bi–0.5 Sn Alloy by Microalloying with Mn, J. Magnes. Alloy, 2021, 9(5), p 1656–1668.

    Article  CAS  Google Scholar 

  13. Y. He, C. Peng, Y. Feng et al., Effects of Alloying Elements on the Microstructure and Corrosion Behavior of Mg-Li-Al-Y Alloys, J. Alloys Compd., 2020, 834, p 154344.

    Article  CAS  Google Scholar 

  14. L.A. Oliveira, R.M.P. Silva, A.C.D. Rodas et al., Surface Chemistry, Film Morphology, Local Electrochemical Behavior and Cytotoxic Response of Anodized AZ31B Magnesium Alloy, J. Mater. Res. Technol., 2020, 9(6), p 14754–14770.

    Article  Google Scholar 

  15. D. Huang, T. Bu, G.L. Song et al., High Anodic-Efficiency and Energy-Density Magnesium-Air Battery with Modified AZ31 Anode, J. Alloys Compd., 2023, 960, p 170592.

    Article  CAS  Google Scholar 

  16. X. Chen, Q. Zou, Q. Le et al., The Quasicrystal of Mg-Zn-Y on Discharge and Electrochemical Behaviors as the Anode for Mg-Air Battery, J. Power. Sources, 2020, 451, p 227807.

    Article  CAS  Google Scholar 

  17. H. Lu, L. Ren, L. Fan et al., Effect of Yttrium and Calcium Additions on Electrochemical Behaviors and Discharge Performance of AZ80 Anodes for Mg-Air Battery, T Nonferr. Metal Soc., 2022, 32(8), p 2510–2526.

    Article  Google Scholar 

  18. S.M. Baek, S.Y. Lee, J.C. Kim et al., Role of Trace Additions of Mn and Y in Improving the Corrosion Resistance of Mg-3Al-1Zn Alloy, Corros. Sci., 2021, 178, p 108998.

    Article  CAS  Google Scholar 

  19. A.E. Coy, F. Viejo, P. Skeldon et al., Susceptibility of Rare-Earth-Magnesium Alloys to Micro-Galvanic Corrosion, Corros. Sci., 2010, 52(12), p 3896–3906.

    Article  CAS  Google Scholar 

  20. Y. Shi, C. Peng, Y. Feng et al., Microstructure and Electrochemical Corrosion Behavior of Extruded Mg-Al-Pb-La Alloy as Anode for Seawater-Activated Battery, Mater. Des., 2017, 124, p 24–33.

    Article  CAS  Google Scholar 

  21. J. Liu, H. Hu, T. Wu et al., Tailoring the Microstructure of Mg-Al-Sn-RE Alloy Via Friction Stir Processing and the Impact on Its Electrochemical Discharge Behaviour as the Anode for Mg-Air Battery, J. Magnes. Alloy, 2022 https://doi.org/10.1016/j.jma.2022.07.016

    Article  Google Scholar 

  22. H. Yang, B. Lei, L. Wu, B. Jiang, W. Liu, Q. Yang, and F. Pan, Effects of Texture and Discharge Products on the Discharge Performance of Mg Anodes for Mg Air Batteries, J. Electrochem. Soc., 2020, 167(13), p 130528.

    Article  CAS  Google Scholar 

  23. N. Wang, Y. Mu, W. Xong et al., Effect of Crystallographic Orientation on the Discharge and Corrosion Behaviour of AP65 Magnesium Alloy Anodes, Corros. Sci., 2018, 144, p 107–126.

    Article  CAS  Google Scholar 

  24. Y.S. Jeong and W.J. Kim, Enhancement of Mechanical Properties and Corrosion Resistance of Mg–Ca Alloys through Microstructural Refinement by Indirect Extrusion, Corros. Sci., 2014, 82, p 392–403.

    Article  CAS  Google Scholar 

  25. Y. Sun, R. Wang, C. Peng et al., Effects of Sn and Y on the Microstructure, Texture, and Mechanical Properties of As-Extruded Mg-5Li-3Al-2Zn Alloy, Mater. Sci. Eng. A, 2018, 733, p 429–439.

    Article  CAS  Google Scholar 

  26. H.W. Chang, D. Qiu, J.A. Taylor et al., The Role of Al2Y in Grain Refinement in Mg–Al–Y Alloy System, J. Magnes. Alloy., 2013, 1(2), p 115–121.

    Article  Google Scholar 

  27. H. Lv, L. Li, Z. Wen et al., Effects of Extrusion Ratio and Temperature on the Microstructure and Mechanical Properties of Mg-Zn-Yb-Zr Extrusion Alloys, Mater. Sci. Eng. A, 2022, 833, p 142521.

    Article  CAS  Google Scholar 

  28. Q. Lin, J. Liu, X. An et al., Cryogenic-Deformation-Induced Phase Transformation in an FeCoCrNi High-Entropy Alloy, Mater. Res. Lett., 2018, 6(4), p 236–243.

    Article  CAS  Google Scholar 

  29. L.G. Bland, K. Gusieva, and J.R. Scully, Effect of Crystallographic Orientation on the Corrosion of Magnesium: Comparison of Film Forming and Bare Crystal Facets Using Electrochemical Impedance and Raman Spectroscopy, Electrochim. Acta, 2017, 227, p 136–151.

    Article  CAS  Google Scholar 

  30. A. Salandari-Rabori, A. Zarei-Hanzaki, S. Asqardoust et al., Novel RE-Texture Component and Bimodal Microstructure Formation during Post-Annealing of an Accumulative Back Extruded WE43 Alloy, Mater. Lett., 2023, 337, p 134006.

    Article  CAS  Google Scholar 

  31. X. Chen, Q. Liao, Q. Le et al., The Influence of Samarium (Sm) on the Discharge and Electrochemical Behaviors of the Magnesium Alloy AZ80 as an Anode for the Mg-Air Battery, Electrochim. Acta, 2020, 348, p 136315.

    Article  CAS  Google Scholar 

  32. X. Liu, J. Xue, and D. Zhang, Electrochemical Behaviors and Discharge Performance of the As-Extruded Mg-1.5 wt% Ca Alloys as Anode for Mg-Air Battery, J. Alloys Compd., 2019, 790, p 822–828.

    Article  CAS  Google Scholar 

  33. S. Li, H. Li, C. Zhao et al., Effects of Ca Addition on Microstructure, Electrochemical Behavior and Magnesium-Air Battery Performance of Mg-2Zn-xCa Alloys, J. Electroanal. Chem., 2022, 904, p 115944.

    Article  CAS  Google Scholar 

  34. Y. Yang, S. Cao, T. Ying et al., The Effects of a Corrosion Product Film on the Corrosion Behavior of Mg-Al Alloy with Micro-Alloying of Yttrium in a Chloride Solution, Corr. Commun., 2023, 11, p 12–22.

    Article  Google Scholar 

  35. Y. Zhang, L. Fan, Y. Guo et al., Discharge Performance of Mg-Y Binary Alloys as Anodes for Mg-Air Batteries, Electrochim. Acta, 2023, 460, p 142594.

    Article  CAS  Google Scholar 

  36. Q. Zou, Q. Le, X. Chen et al., The Influence of Ga Alloying on Mg-Al-Zn Alloys as Anode Material for Mg-Air Primary Batteries, Electrochim. Acta, 2022, 401, p 139372.

    Article  CAS  Google Scholar 

  37. W. Cheng, Y. Chen, X. Gu et al., Revealing the Influence of Crystallographic Orientation on the Electrochemical and Discharge Behaviors of Extruded Diluted Mg-Sn-Zn-Ca Alloy as Anode for Mg-Air Battery, J. Power. Sources, 2022, 520, p 230802.

    Article  CAS  Google Scholar 

  38. X. Gu, W. Cheng, S. Cheng et al., Tailoring the Microstructure and Improving the Discharge Properties of Dilute Mg-Sn-Mn-Ca Alloy as Anode for Mg-Air Battery through Homogenization Prior to Extrusion, J. Mater. Sci. Technol., 2021, 60, p 77–89.

    Article  CAS  Google Scholar 

  39. B. Xiao, G.L. Song, D. Zheng et al., A Corrosion Resistant Die-Cast Mg-9Al-1Zn Anode with Superior Discharge Performance for Mg-Air Battery, Mater. Des., 2020, 194, p 108931.

    Article  CAS  Google Scholar 

  40. J. Bao, J. Sha, L. Li et al., Electrochemical Properties and Discharge Performance of Mg-3Sn-xCa Alloy as a Novel Anode for Mg-Air Battery, J. Alloys Compd., 2023, 934, p 167849.

    Article  CAS  Google Scholar 

  41. G.L. Song, R. Mishra, and Z.Q. Xu, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy, Electrochem. Commun., 2010, 12(8), p 1009–1012.

    Article  CAS  Google Scholar 

  42. H. Yang, L. Wu, B. Jiang et al., Clarifying the Roles of Grain Boundary and Grain Orientation on the Corrosion and Discharge Processes of α-Mg Based Mg-Li Alloys for Primary Mg-Air Batteries, J. Mater. Sci. Technol., 2021, 62, p 128–138.

    Article  CAS  Google Scholar 

  43. X. Liu, J. Xue, P. Zhang et al., Effects of the Combinative Ca, Sm and La Additions on the Electrochemical Behaviors and Discharge Performance of the As-Extruded AZ91 Anodes for Mg-Air Batteries, J. Power. Sources, 2019, 414, p 174–182.

    Article  CAS  Google Scholar 

  44. G.L. Song and Z. Xu, Crystal Orientation and Electrochemical Corrosion of Polycrystalline Mg, Corros. Sci., 2012, 63, p 100–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the Natural Science Foundation of China [Grant No. 52105140] and Young Science and Technology Talent in Hunan Province [Grant No. 2022RC1065] are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liu, G., Wu, P. et al. The Effect of Extrusion Ratio on the Discharge and Corrosion Behavior of Mg-3Al-2.8Y-0.7Mn Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09532-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09532-1

Keywords

Navigation