Skip to main content
Log in

Surface Properties and Fatigue Behavior of 6061 Aluminum Alloy by Multi-pass Ultrasonic Surface Rolling Process

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The strengthening mechanism of 6061 aluminum alloy by multi-pass ultrasonic surface rolling process (USRP) was investigated. An explicit kinetic finite element model of USRP was established to analyze the distribution of compressive residual stresses on the specimen surface along the depth direction and compared with the experimentally obtained compressive residual stresses, which was found to be consistent with the pattern, with an average error of less than 10%. The microstructure, surface roughness, corrosion resistance and fatigue properties of the multi-pass USRP treatment were tested and characterized by means of electron backscatter diffraction, scanning electron microscopy, electrochemical testing, and rotational bending fatigue testing. It was demonstrated that USRP can significantly improve the surface properties of the material, thereby increasing the fatigue resistance of the material. The surface roughness is reduced from an average roughness of 1.77-0.29 μm; dense passivation film is produced on the surface, and the radius of capacitive arc can be up to 10 times of the initial specimen; the source of fatigue cracks is transferred from the surface to the subsurface, and the fracture morphology tends to be flat. USRP is a method to significantly improve the fatigue life of aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N.I. Kolobnev, L. Ber, L.B. Khokhlatova, and D.K. Ryabov, Structure, Properties and Application of Alloys of the Al–Mg–Si–(Cu) System, Met. Sci. Heat Treat., 2012, 53, p 440–444. https://doi.org/10.1007/s11041-012-9412-8

    Article  CAS  Google Scholar 

  2. L. Cui, M.X. Guo, X. Peng, Y. Zhang, J. Zhang, and L. Zhuang, Influence of Pre-Deformation on the Precipitation Behaviors of Al-Mg-Si-Cu Alloy for Automotive Application, Jinshu Xuebao/Acta Metall. Sin., 2015, 51, p 289–297. https://doi.org/10.11900/0412.1961.2014.00348

    Article  CAS  Google Scholar 

  3. F. Zhang, X. Feng, Z. Yang, J. Kang, and T. Wang, Dislocation-twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals, Sci. Rep., 2015, 5, p 8981. https://doi.org/10.1038/srep08981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Grosdidier and M. Novelli, Recent Developments in the Application of Surface Mechanical Attrition Treatments for Improved Gradient Structures: Processing Parameters and Surface Reactivity, Mater. Trans., 2019, 60, p 1344–1355. https://doi.org/10.2320/matertrans.MF201929

    Article  CAS  Google Scholar 

  5. J. Azadmanjiri, C.C. Berndt, A. Kapoor, and C. Wen, Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT), Crit. Rev. Solid State Mater. Sci., 2015, 40, p 164–181. https://doi.org/10.1080/10408436.2014.978446

    Article  CAS  Google Scholar 

  6. K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A., 2004, 375–377, p 38–45. https://doi.org/10.1016/j.msea.2003.10.261

    Article  CAS  Google Scholar 

  7. L. Zhou, C. Long, W. He, L. Tian, and W. Jia, Improvement of High-Temperature Fatigue Performance in the Nickel-Based Alloy by LSP-Induced Surface Nanocrystallization, J. Alloys Compd., 2018, 744, p 156–164. https://doi.org/10.1016/j.jallcom.2018.01.070

    Article  CAS  Google Scholar 

  8. X. Li, J. Zhao, Y. Ye, Z. Xu, G. Liu, X. Luo, X. Wang, Y. Dong, T. Huang, C. Ye, and H. Ding, Multi-Objective Optimization of Laser Shock Peening Based on an Analytical Model, Int. J. Fatigue, 2023, 172, p 107640. https://doi.org/10.1016/j.ijfatigue.2023.107640

    Article  Google Scholar 

  9. H. Chen, Y. Guan, L. Zhu, Y. Li, J. Zhai, and J. Lin, Effects of Ultrasonic Shot Peening Process Parameters on Nanocrystalline and Mechanical Properties of Pure Copper Surface, Mater. Chem. Phys., 2021, 259, p 124025. https://doi.org/10.1016/j.matchemphys.2020.124025

    Article  CAS  Google Scholar 

  10. B.N. Mordyuk, G.I. Prokopenko, Y.V. Milman, M.O. Iefimov, and A.V. Sameljuk, Enhanced Fatigue Durability of Al–6Mg Alloy by Applying Ultrasonic Impact Peening: Effects of Surface Hardening and Reinforcement with AlCuFe Quasicrystalline Particles, Mater. Sci. Eng. A, 2013, 563, p 138–146. https://doi.org/10.1016/j.msea.2012.11.061

    Article  CAS  Google Scholar 

  11. B.N. Mordyuk, M.O. Iefimov, K.E. Grinkevych, A.V. Sameljuk, and M.I. Danylenko, Structure and Wear of Al Surface Layers Reinforced with AlCuFe Particles Using Ultrasonic Impact Peening: Effect of Different Particle Sizes, Surf. Coat. Technol., 2011, 205, p 5278–5284. https://doi.org/10.1016/j.surfcoat.2011.05.046

    Article  CAS  Google Scholar 

  12. R.N. Harsha, V. Mithun Kulkarni, and B. Satish Babu, Severe Plastic Deformation - A Review, Mater. Today: Proc., 2018, 5, p 22340–22349. https://doi.org/10.1016/j.matpr.2018.06.600

    Article  Google Scholar 

  13. X. Xu, D. Liu, X. Zhang, C. Liu, D. Liu, and W. Zhang, Influence of Ultrasonic Rolling on Surface Integrity and Corrosion Fatigue Behavior of 7B50-T7751 Aluminum Alloy, Int. J. Fatigue, 2019, 125, p 237–248. https://doi.org/10.1016/j.ijfatigue.2019.04.005

    Article  CAS  Google Scholar 

  14. J. Yang, D. Liu, X. Zhang, M. Liu, W. Zhao, and C. Liu, The Effect of Ultrasonic Surface Rolling Process on the Fretting Fatigue Property of GH4169 Superalloy, Int. J. Fatigue, 2020, 133, p 105373. https://doi.org/10.1016/j.ijfatigue.2019.105373

    Article  CAS  Google Scholar 

  15. X. Xu, D. Liu, X. Zhang, C. Liu, and D. Liu, Mechanical and Corrosion Fatigue Behaviors of Gradient Structured 7B50-T7751 Aluminum Alloy Processed via Ultrasonic Surface Rolling, J. Mater. Sci. Technol., 2020, 40, p 88–98. https://doi.org/10.1016/j.jmst.2019.08.030

    Article  CAS  Google Scholar 

  16. J. Yang, D. Liu, M. Li, Z. Ren, D. Liu, X. Xu, X. Zhang, H. Zhang, J. Xiang, and C. Ye, Evolution Mechanism for a Surface Gradient Nanostructure in GH4169 Superalloy Induced by an Ultrasonic Surface Rolling Process, Mater. Sci. Eng. A, 2023, 879, p 145271. https://doi.org/10.1016/j.msea.2023.145271

    Article  CAS  Google Scholar 

  17. G.Y. Zheng, X. Luo, Z.D. Kou, Z.L. Liu, B. Huang, and Y.Q. Yang, Thermal Stability of Nanocrystalline Surface Layer in an Aged Al–Zn–Mg–Cu Alloy Induced by Ultrasonic Surface Rolling Processing, Mater. Charact., 2023, 199, p 112776. https://doi.org/10.1016/j.matchar.2023.112776

    Article  CAS  Google Scholar 

  18. T. Wang, Y. Huang, Y. Ma, L. Wu, H. Yan, C. Liu, Y. Liu, B. Liu, and W. Liu, Microstructure and Mechanical Properties of Powder Metallurgy 2024 Aluminum Alloy during Cold Rolling, J. Mater. Res. Technol., 2021, 15, p 3337–3348.

    Article  CAS  Google Scholar 

  19. J.H. Cong, L. Wang, Y.Z. Xu, and L. Hui, Influence of Ultrasonic Surface Rolling on Fatigue Behavior of 2D12 Aluminum Alloy, Rare Met. Mater. Eng., 2022, 51, p 113–118.

    CAS  Google Scholar 

  20. J. Tang, Y. Shi, J. Zhao, L. Chen, and Z. Wu, Numerical Modeling Considering Initial Gradient Mechanical Properties and Experiment Verification of Residual Stress Distribution Evolution of 12Cr2Ni4A Steel Generated by Ultrasonic Surface Rolling, Surf. Coat. Technol., 2023, 452, p 129127. https://doi.org/10.1016/j.surfcoat.2022.129127

    Article  CAS  Google Scholar 

  21. M. Zhang, J. Deng, Z. Liu, and Y. Zhou, Investigation Into Contributions of Static and Dynamic Loads to Compressive Residual Stress Fields Caused by Ultrasonic Surface Rolling, Int. J. Mech. Sci., 2019, 163, p 105144. https://doi.org/10.1016/j.ijmecsci.2019.105144

    Article  Google Scholar 

  22. M. Zhang, Z. Liu, J. Deng, M. Yang, Q. Dai, and T. Zhang, Optimum Design of Compressive Residual Stress Field Caused by Ultrasonic Surface Rolling with a Mathematical Model, Appl. Math. Model., 2019, 76, p 800–831. https://doi.org/10.1016/j.apm.2019.07.009

    Article  Google Scholar 

  23. X. Ma, W. Zhang, S. Xu, K. Sun, X. Hu, G. Ren, J. Li, X. Zhao, and F. Gao, Effect of Ultrasonic Surface Rolling Process on Surface Properties and Microstructure of 6061 Aluminum Alloy, Mater. Res., 2023 https://doi.org/10.1590/1980-5373-mr-2023-0322

    Article  Google Scholar 

  24. D. Wu, H. Lv, H. Wang, and J. Yu, Surface Micro-Morphology and Residual Stress Formation Mechanisms of Near-Net-Shaped Blade Produced by Low-Plasticity Ultrasonic Rolling Strengthening Process, Mater. Des., 2022, 215, p 110513. https://doi.org/10.1016/j.matdes.2022.110513

    Article  Google Scholar 

  25. K. Zhao, T. Gao, H. Yang, K. Hu, G. Liu, Q. Sun, J. Nie, and X. Liu, Enhanced Grain Refinement and Mechanical Properties of a High–Strength Al–Zn–Mg–Cu–Zr Alloy Induced by TiC Nano–Particles, Mater. Sci. Eng. A, 2021, 806, p 140852. https://doi.org/10.1016/j.msea.2021.140852

    Article  CAS  Google Scholar 

  26. X. Xu, J. Zhang, H. Liu, Y. He, and W. Zhao, Grain Refinement Mechanism under High Strain-Rate Deformation in Machined Surface during High Speed Machining Ti6Al4V, Mater. Sci. Eng. A, 2019, 752, p 167–179. https://doi.org/10.1016/j.msea.2019.03.011

    Article  CAS  Google Scholar 

  27. B. Li, S. Zhang, Y. Fang, J. Zhang, and Z. Liu, Deformation Behaviour and Texture Evolution of Martensite Steel Subjected to Hard Milling, Mater. Charact., 2019, 156, p 109881. https://doi.org/10.1016/j.matchar.2019.109881

    Article  CAS  Google Scholar 

  28. S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Effects of Grain Size and Dislocation Density on Strain Hardening Behavior of Ultrafine Grained AA1050 Processed by Accumulative Roll Bonding, J. Alloys Compd., 2016, 658, p 854–861. https://doi.org/10.1016/j.jallcom.2015.11.032

    Article  CAS  Google Scholar 

  29. H. Shi, N. Zong, J. Le, S. Li, G. Huang, J. Li, J. Mao, and W. Lu, Strain Hardening Versus Softening: Anisotropic Response of Strain Hardening-Softening Transition in a Polycrystalline Zirconium Alloy at Room Temperature from Dislocation Viewpoint, Mater. Sci. Eng. A, 2022, 847, p 143344. https://doi.org/10.1016/j.msea.2022.143344

    Article  CAS  Google Scholar 

  30. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II, Applications, 2010, 28, p 24.

    Google Scholar 

  31. M.A. Vasylyev, S.P. Chenakin, and L.F. Yatsenko, Ultrasonic Impact Treatment Induced Oxidation of Ti6Al4V Alloy, Acta Mater., 2016, 103, p 761–774. https://doi.org/10.1016/j.actamat.2015.10.041

    Article  CAS  Google Scholar 

  32. F. Zhang, J. Evertsson, F. Bertram, L. Rullik, F. Carla, M. Långberg, E. Lundgren, and J. Pan, Integration of Electrochemical and Synchrotron-Based X-Ray Techniques for In-Situ Investigation of Aluminum Anodization, Electrochim. Acta., 2017, 241, p 299–308. https://doi.org/10.1016/j.electacta.2017.04.154

    Article  CAS  Google Scholar 

  33. C. Blanc and G. Mankowski, Susceptibility to Pitting Corrosion of 6056 Aluminium Alloy, Corros. Sci., 1997, 39, p 949–959. https://doi.org/10.1016/S0010-938X(97)81160-2

    Article  Google Scholar 

  34. F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, and Z.Q. Zheng, Corrosion Mechanism Associated with Mg2Si and Si Particles in Al–Mg–Si Alloys, Trans. Nonferr. Met. Soc. China, 2011, 21, p 2559–2567.

    Article  CAS  Google Scholar 

  35. Y. Wang, Y. Deng, J. Chen, Q. Dai, and X. Guo, Effects of Grain Structure Related Precipitation on Corrosion Behavior and Corrosion Fatigue Property of Al–Mg–Si Alloy, J. Mater. Res. Technol., 2020, 9, p 5391–5402. https://doi.org/10.1016/j.jmrt.2020.03.065

    Article  CAS  Google Scholar 

  36. S. Qu, Z. Ren, X. Hu, F. Lai, F. Sun, X. Li, and C. Yang, The Effect of Electric Pulse Aided Ultrasonic Rolling Processing on the Microstructure Evolution, Surface Properties, and Fatigue Properties of a Titanium Alloy Ti5Al4Mo6V2Nb1Fe, Surf. Coat. Technol., 2021, 421, p 127408. https://doi.org/10.1016/j.surfcoat.2021.127408

    Article  CAS  Google Scholar 

  37. M. Cheng, D. Zhang, H. Chen, and W. Qin, Development of Ultrasonic Thread Root Rolling Technology for Prolonging the Fatigue Performance of High Strength Thread, J. Mater. Process. Technol., 2014, 214, p 2395–2401. https://doi.org/10.1016/j.jmatprotec.2014.05.019

    Article  CAS  Google Scholar 

  38. W. Zhao, D. Liu, X. Zhang, Y. Zhou, R. Zhang, H. Zhang, and C. Ye, Improving the Fretting and Corrosion Fatigue Performance of 300M Ultra-High Strength Steel Using the Ultrasonic Surface Rolling Process, Int. J. Fatigue, 2019, 121, p 30–38. https://doi.org/10.1016/j.ijfatigue.2018.11.017

    Article  CAS  Google Scholar 

  39. J. Dang, Q. An, G. Lian, Z. Zuo, Y. Li, H. Wang, and M. Chen, Surface Modification and its Effect on the Tensile and Fatigue Properties of 300M Steel Subjected to Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2021, 422, p 127566. https://doi.org/10.1016/j.surfcoat.2021.127566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Shandong Province (ZR2021ME182), State Key Laboratory of Material Forming and Mould Technology Open Fund Project(P12), National Natural Science Foundation of China (52105377), the Science and Technology Enterprise Innovation Program of Shandong Province, China (2022TSGC2108, 2022TSGC2402, 2023TSGC085, 2023TSGC0119, 2023TSGC0759 and 2023TSGC0961) and Shandong Province Development and Reform Commission Special Needs Talents Project (JNGC2023001).

Author information

Authors and Affiliations

Authors

Contributions

XM was contributed to data curation, formal analysis, writing original draft preparation, software. RG was contributed to conceptualization, software, methodology. SX was contributed to data curation, funding acquisition, review and editing. KS was contributed to software, resources, review and editing. XH was contributed to validation, supervision. MW was contributed to resources, supervision. JL was contributed to investigation, methodology.

Corresponding author

Correspondence to Shubo Xu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Gao, R., Xu, S. et al. Surface Properties and Fatigue Behavior of 6061 Aluminum Alloy by Multi-pass Ultrasonic Surface Rolling Process. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09526-z

Keywords

Navigation