Skip to main content
Log in

Microstructure and Wear Characteristics of Laser-Clad CoCrFeMnNiNb0.3 High-Entropy Alloy Coating

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We enhanced the hardness and wear resistance of CoCrFeMnNi high-entropy alloy coatings using laser cladding to produce CoCrFeMnNiNbX (X = 0, 0.3) coatings on Q235 steel plates. The introduction of Nb elements formed Nb-rich Laves phase and solid solution strengthening in the FCC phase, improving mechanical properties. Electron backscatter diffraction (EBSD) revealed significant grain refinement in the CoCrFeMnNiNb0.3 coating, enhancing fine-grain strengthening. The nanohardness increased 1.3 times to approximately 6.29 ± 0.18. Elevated values for HU, H/E, and H3/E2 indicated superior resistance to plastic deformation. The coating demonstrates commendable wear resistance, evident from an average coefficient of friction measuring 0.459 and a specific wear rate of 3.496 × 10-6 mm3/N·m. The wear mechanisms encompass abrasive, oxidative, and adhesive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. L. Lu, J. Zhang, D. Shen, L. Wu, G. Jiang and L. Li, TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation, J. Alloy. Compd., 2012, 512(1), p 57–62.

    Article  CAS  Google Scholar 

  2. N. Liu, Q. Zhou, M. Xu, M. Niu, P. Zhou and P. Guo, Evolution in microstructure, properties of the laser cladding CoCrFeMoNi coatings at different annealing temperatures, Mater. Sci. Technol., 2023, 39(17), p 2782–2791.

    Article  CAS  Google Scholar 

  3. D.C. Wang, C.L. Wu, S. Zhang, C.H. Zhang, D.X. Zhang and X.Y. Sun, Wear and corrosion of CoCrFeNiMnTix high entropy alloy coatings by laser cladding, Mater. Sci. Technol., 2023, 39(17), p 2811–2823.

    Article  CAS  Google Scholar 

  4. J. Xu, Z. Hu, S. Wang, W. Tan and J. Zhou, Laser cladding Co-based coating coupled with electromagnetic/ultrasonic compound energy field, Mater. Sci. Technol., 2023, 39(7), p 803–814.

    Article  CAS  Google Scholar 

  5. L. Yingpeng, L. Yunlong and F. Hanguang, Improvement properties of laser cladding Ni45-Cr3C2 coatings by adding B4C and V, Mater. Sci. Technol., 2023, 39(4), p 443–453.

    Article  Google Scholar 

  6. S. Yuan, H. Li, C. Han, W. Li, X. Xu, C. Chen, R. Wei, T. Wang, S. Wu and F. Li, FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding, Mater. Sci. Technol., 2023, 39(6), p 705–713.

    Article  CAS  Google Scholar 

  7. M.H. Nie, S. Zhang, Z.Y. Wang, C.H. Zhang, H.T. Chen and J. Chen, A test method for the normal interface bonding strength of laser cladding, Mater. Sci. Technol., 2022, 38(8), p 453–457.

    Article  CAS  Google Scholar 

  8. B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  9. Y.-J. Hsu, W.-C. Chiang and J.-K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 2005, 92(1), p 112–117.

    Article  CAS  Google Scholar 

  10. K.P. Yu, S.H. Feng, C. Ding, P. Yu and M.X. Huang, Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions, Corros. Sci., 2022, 208, 110616.

    Article  CAS  Google Scholar 

  11. Q. Zhao, Z. Pan, X. Wang, H. Luo, Y. Liu and X. Li, Corrosion and passive behavior of AlxCrFeNi3−x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment, Corrosion Sci., 2022, 208, 110666.

    Article  CAS  Google Scholar 

  12. J.B. Cheng, X.B. Liang and B.S. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol., 2014, 240, p 184–190.

    Article  CAS  Google Scholar 

  13. C. Liu, Y. Gao, K. Chong, F. Guo, D. Wu and Y. Zou, Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment, J. Alloy. Compd., 2023, 935, 168013.

    Article  CAS  Google Scholar 

  14. I. Moravcik, N.S. Peighambardoust, A. Motallebzadeh, L. Moravcikova-Gouvea, C. Liu, J.M. Prabhakar, I. Dlouhy and Z. Li, Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution, Mater Charact, 2021, 172, 110869.

    Article  CAS  Google Scholar 

  15. S. Zhang, B. Han, M. Li, Q. Zhang, C. Hu, C. Jia, Y. Li and Y. Wang, Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating, Surf. Coat. Technol., 2021, 417, 127218.

    Article  CAS  Google Scholar 

  16. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  17. U.S. Anamu, O.O. Ayodele, E. Olorundaisi, B.J. Babalola, P.I. Odetola, A. Ogunmefun, K. Ukoba, T.C. Jen and P.A. Olubambi, Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: a critical review, J. Market. Res., 2023, 27, p 4833–4860.

    CAS  Google Scholar 

  18. F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang and C.T. Liu, Designing eutectic high entropy alloys of CoCrFeNiNbx, J. Alloy. Compd., 2016, 656, p 284–289.

    Article  CAS  Google Scholar 

  19. Y. Zhang, X. Chen, S. Jayalakshmi, R.A. Singh, V.B. Deev and E.S. Prusov, Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X=Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing, J. Alloys Comp., 2021, 857, 157625.

    Article  CAS  Google Scholar 

  20. Y. Yu, F. He, Z. Qiao, Z. Wang, W. Liu and J. Yang, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys, J. Alloy. Compd., 2019, 775, p 1376–1385.

    Article  CAS  Google Scholar 

  21. T.Z. Xu, S. Zhang, L. Wang, Y. Du, C.L. Wu, C.H. Zhang, X.Y. Sun, H.T. Chen and J. Chen, Influence of scanning speed on the microstructure, nanoindentation characteristics and tribological behavior of novel maraging steel coatings by laser cladding, Mater Charact, 2023, 205, 113335.

    Article  CAS  Google Scholar 

  22. F. He, Z. Wang, S. Niu, Q. Wu, J. Li, J. Wang, C.T. Liu and Y. Dang, Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate, J. Alloys Comp., 2016, 667, p 53–57.

    Article  CAS  Google Scholar 

  23. Z. Wang and I. Baker, Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy, Mater. Lett., 2016, 180, p 153–156.

    Article  CAS  Google Scholar 

  24. N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky and G.A. Salishchev, Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloy. Compd., 2017, 693, p 394–405.

    Article  CAS  Google Scholar 

  25. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki and T.G. Langdon, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing, Mater. Sci. Eng. A, 2017, 705, p 411–419.

    Article  CAS  Google Scholar 

  26. N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov and G.A. Salishchev, Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing, Mater. Lett., 2016, 185, p 1–4.

    Article  CAS  Google Scholar 

  27. W. Xu, M. Chen, X. Lu, D.-W. Zhang, H.-P. Singh, Y. Jian-shu, Y. Pan, X.-H. Qu and C.-Z. Liu, Effects of Mo content on corrosion and tribocorrosion behaviours of Ti-Mo orthopaedic alloys fabricated by powder metallurgy, Corros. Sci., 2020, 168, 108557.

    Article  CAS  Google Scholar 

  28. Y.F. Juan, J. Li, Y.Q. Jiang, W.L. Jia and Z.J. Lu, Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings, Appl. Surf. Sci., 2019, 465, p 700–714.

    Article  CAS  Google Scholar 

  29. Y. Guo, L. Liu, Y. Zhang, J. Qi, B. Wang, Z. Zhao, J. Shang and J. Xiang, A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys, J. Mater. Res., 2018, 33(19), p 3258–3265.

    Article  CAS  Google Scholar 

  30. X.-G. Chen, G. Qin, X.-F. Gao, R.-R. Chen, Q. Song and H.-Z. Cui, Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases, China Foundry, 2022, 19(6), p 457–463.

    Article  Google Scholar 

  31. F. Shu, B. Zhang, T. Liu, S. Sui, Y. Liu, P. He, B. Liu and B. Xu, Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings, Surf. Coat. Technol., 2019, 358, p 667–675.

    Article  CAS  Google Scholar 

  32. J. Wang, J. Zou, H. Yang, Z. Liu and S. Ji, High strength and ductility of an additively manufactured CrCoNi medium-entropy alloy achieved by minor Mo doping, Mater. Sci. Eng. A, 2022, 843, 143129.

    Article  CAS  Google Scholar 

  33. W. Wang, J. Wang, Z. Sun, J. Li, L. Li, X. Song, X. Wen, L. Xie and X. Yang, Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys, J. Alloy. Compd., 2020, 812, 152139.

    Article  CAS  Google Scholar 

  34. C. Dai, H. Luo, J. Li, C. Du, Z. Liu and J. Yao, X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid, Appl. Surf. Sci., 2020, 499, 143903.

    Article  CAS  Google Scholar 

  35. F. Brownlie, T. Hodgkiess, A. Pearson and A.M. Galloway, A study on the erosion-corrosion behaviour of engineering materials used in the geothermal industry, Wear, 2021, 477, 203821.

    Article  CAS  Google Scholar 

  36. C. Duan, A. Kostka, X. Li, Z. Peng, P. Kutlesa, R. Pippan and E. Werner, Deformation-induced homogenization of the multi-phase senary high-entropy alloy MoNbTaTiVZr processed by high-pressure torsion, Mater. Sci. Eng. A, 2023, 871, 144923.

    Article  CAS  Google Scholar 

  37. N. Gong, R. Karyappa, T.L. Meng, Y. Wang, S.L. Teo, J. Cao, M. Lin, X. Huang, C.K.I. Tan, A. Suwardi and H. Liu, Synthesis and structural characterizations of CrCoFeNiMnx (0 ≤ x ≤ 1) high-entropy-alloy thin films by thermal reduction in hydrogen, J. Mater. Sci., 2023, 58(29), p 12058–12069.

    Article  CAS  Google Scholar 

  38. S.Y. Wei, C.M. Wang, W.Y. Peng, R.K. Luo, Y. Chen, Z.Z. Wan and Y. Jin, Effects of process parameters and annealing on microstructure and properties of CoCrFeMnNi high-entropy alloy coating prepared by plasma cladding, China Foundry, 2023, 20(6), p 491–502. https://doi.org/10.1007/s41230-023-3013-6

    Article  Google Scholar 

  39. T.-Y. Liu, Y.-C. Lou, S. Zhang, Z.-H. Zhu, J. Zhao, S.-B. Liu, K. Shi and N. Zhao, A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy designed using cluster-plus-glue-atom model for laser additive manufacturing, China Foundry, 2023, 20(5), p 414–422.

    Article  Google Scholar 

  40. T.Z. Xu, S. Zhang, Z.Y. Wang, C.H. Zhang, D.X. Zhang, M. Wang and C.L. Wu, Wear behavior of graphite self-lubricating Babbitt alloy composite coating on 20 steel prepared by laser cladding, Eng. Fail. Anal., 2022, 141, 106698.

    Article  CAS  Google Scholar 

  41. D. Song, A. Ma, W. Sun, J. Jiang, J. Jiang, D. Yang and G. Guo, Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing, Corros. Sci., 2014, 82, p 437–441.

    Article  CAS  Google Scholar 

  42. H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao and T. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Mater. Chem. Phys., 2018, 210, p 43–48.

    Article  CAS  Google Scholar 

  43. W.H. Liu, T. Yang and C.T. Liu, Precipitation hardening in CoCrFeNi-based high entropy alloys, Mater. Chem. Phys., 2018, 210, p 2–11.

    Article  CAS  Google Scholar 

  44. S. Chen, X. Xie, W. Li, R. Feng, B. Chen, J. Qiao, Y. Ren, Y. Zhang, K.A. Dahmen and P.K. Liaw, Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy, Mater. Chem. Phys., 2018, 210, p 20–28.

    Article  CAS  Google Scholar 

  45. T.Z. Xu, S. Zhang, Y. Du, C.L. Wu, C.H. Zhang, X.Y. Sun, H.T. Chen and J. Chen, Development and characterization of a novel maraging steel fabricated by laser additive manufacturing, Mater. Sci. Eng. A, 2024, 891, 145975.

    Article  CAS  Google Scholar 

  46. Z. Li and D. Raabe, Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy, Mater. Chem. Phys., 2018, 210, p 29–36.

    Article  CAS  Google Scholar 

  47. Y. Liu, C. Li, P. Chen, M. Li and A. Hu, Effects of electrodeposited Co-W and Co-Fe-W diffusion barrier layers on the evolution of Sn/Cu interface, Mater. Chem. Phys., 2024, 313, 128761.

    Article  CAS  Google Scholar 

  48. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 2004, 24(8), p 981–988.

    Article  Google Scholar 

  49. J. Camargo and M. Ferreira, Nonblockers for hereditarily decomposable continua with the property of Kelley, Topol. Appl., 2024, 342, 108782.

    Article  Google Scholar 

  50. M. Sharma and N. Sarma, Multi-objective optimization for energy efficient cooperative communication in energy-constrained overlay Cognitive Radio Networks, Phys. Commun., 2024, 62, 102251.

    Article  Google Scholar 

  51. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin and P.K. Liaw, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater., 2015, 99, p 247–258.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to the financial support for this research from Liaoning Provincial Department of Education (LJKQZ20222302).

Author information

Authors and Affiliations

Authors

Contributions

WTZ was involved in investigation, writing—review & editing. CXZ helped in investigation, funding acquisition, data curation. YZ contributed to data curation, supervision.

Corresponding author

Correspondence to C. X. Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W.T., Zhao, Y. & Zhu, C.X. Microstructure and Wear Characteristics of Laser-Clad CoCrFeMnNiNb0.3 High-Entropy Alloy Coating. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09496-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09496-2

Keywords

Navigation