Skip to main content
Log in

Surface CuAl9Mn2/W Composites Prepared by Multipass Friction Stir Processing: Microstructures, Phases, and Mechanical and Tribological Properties

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article discusses the structural evolution, mechanical characteristics and tribological behaviors of CuAl9Mn2 + W surface composites containing 0, 5, 10 and 15 vol.% W prepared using both 1-pass and 4-pass friction stir processing. Homogeneous distribution of W-particles in the bronze matrix has been achieved using the 4-pass FSP. According to XRD, the following phases have been formed in the FSPed bronze matrix: α-Cu solid solution, α + β′-Cu3Al eutectoid, and γ-Al4Cu9 laths. Adding tungsten in FSP resulted in enriching the samples with γ-Al4Cu9. Formation of γ-Al4Cu9 occurred according to the well-known equilibrium reaction β → α + γ and may be related to some physical characteristic of the composite that changed with the addition of tungsten. In our opinion, this could be the reduced heat conductivity that made some β-Cu3Al grains to decompose into α-Cu and γ-Al4Cu9 ones instead of the β → β′ transformation. The mean sizes of the α-solid solution matrix grains after 1-pass and 4-pass FSP were at the level of 4.48-7.54 μm and 3.47-5.43 μm, respectively. The minimum grain size 3.47 μm was obtained after 4-pass FSP on CuAl9Mn2 + 10%W samples. The tensile strength of the composites, however, decreased as compared to that of the as-received and FSPed bronze, while microhardness was almost the same number for all samples. The maximum wear resistance was achieved on the 4-pass FSPed sample containing 5 vol.% W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. All data necessary for the replication of results are provided within the paper.

Code availability

Not applicable.

References

  1. S. Wan, X. Cui, Q. Jin, J. Ma, X. Wen, W. Su, X. Zhang, G. Jin and H. Tian, Microstructure and Properties of Cold Sprayed Aluminum Bronze Coating on MBLS10A-200 Magnesium-Lithium Alloy, Mater. Chem. Phys., 2020, 281, p 125832. https://doi.org/10.1016/j.matchemphys.2022.125832

    Article  CAS  Google Scholar 

  2. T. Lu, C. Chen, P. Li, Ch. Zhang, W. Han, Z. Ya, Ch. Suryanarayana and Zh. Guo, Enhanced Mechanical and Electrical Properties of In Situ Synthesized Nano-Tungsten Dispersion-Strengthened Copper Alloy, Mater. Sci. Eng. A, 2021, 799, p 140161. https://doi.org/10.1016/j.msea.2020.140161

    Article  CAS  Google Scholar 

  3. M.V. Lungu, D. Pătroi, V. Marinescu, S. Mitrea, I. Ion, M. Marin and P. Godeanu, Tungsten–Copper Composites for Arcing Contact Applications in High Voltage Circuit Breakers, Mater. Sci. Res. India, 2020, 17(3), p 214–229. https://doi.org/10.13005/msri/170304

    Article  CAS  Google Scholar 

  4. L.L. Dong, M. Ahangarkani, W.G. Chen and Y.S. Zhang, Recent Progress in Development of Tungsten-Copper Composites: Fabrication, Modification and Applications, Intl. J. Refract. Hard Met., 2018, 75, p 30. https://doi.org/10.1016/j.ijrmhm.2018.03.014

    Article  CAS  Google Scholar 

  5. Q. Zhang, Sh. Liang and L. Zhuo, Fabrication and Properties of the W-30wt.%Cu Gradient Composite with W@WC Core-Shell Structure, J. Alloys Compd., 2017, 708, p 796–803. https://doi.org/10.1016/j.jallcom.2017.03.064

    Article  CAS  Google Scholar 

  6. Y. Huang, X. Zhou, N. Hua, W. Que and W. Chen, High Temperature Friction and Wear Behavior of Tungsten–Copper Alloys, Int. J. Refract. Met. Hard Mater., 2018, 77, p 105–112. https://doi.org/10.1016/j.ijrmhm.2018.08.001

    Article  CAS  Google Scholar 

  7. F. Ren, W. Zhu, K. Chu and C. Zhao, Tribological and Corrosion Behaviors of Bulk Cu-W Nanocomposites Fabricated by Mechanical Alloying and Warm Pressing, J. Alloy. Compd., 2016, 676, p 164–172. https://doi.org/10.1016/j.jallcom.2016.03.141

    Article  CAS  Google Scholar 

  8. W. Chen, P. Feng, L. Dong, M. Ahangarkani, Sh. Ren and Y. Fud, The Process of Surface Carburization and High Temperature Wear Behavior of Infiltrated W-Cu Composites, Surf. Coat. Technol., 2018, 353, p 300–308. https://doi.org/10.1016/j.surfcoat.2018.08.088

    Article  CAS  Google Scholar 

  9. M. Hashempour, H. Razavizadeh and H. Rezaie, Investigation on Wear Mechanism of Thermochemically Fabricated W-Cu Composites, Wear, 2010, 269(5–6), p 405–415. https://doi.org/10.1016/j.wear.2010.04.026

    Article  CAS  Google Scholar 

  10. A. Pervikov, A. Filippov, Yu. Mironov, M. Kalashnikov, M. Krinitcyn, D. Eskin, M. Lerner and S. Tarasov, Microstructure and Properties of a Nanostructured W-31 wt.% Cu Composite Produced by Magnetic Pulse Compaction of Bimetallic Nanoparticles, Intl. J. Refract. Hard Met., 2022, 103, p 105735. https://doi.org/10.1016/j.ijrmhm.2021.105735

    Article  CAS  Google Scholar 

  11. H. Yo, X. Zhou, N. Hua, W. Que and W. Chen, High Temperature Friction and WEAR Behavior of Tungsten–Copper Alloys, Intl. J. Refract. Hard Met., 2018, 77, p 105–112. https://doi.org/10.1016/j.ijrmhm.2018.08.001

    Article  CAS  Google Scholar 

  12. C.L. Wang, Y. Gao and G.Y. Zhang, Microstructure and wear Resistance of Cu-W Alloy Contact Material Prepared by Laser Shock Processing, T. Mater. Heat Treat., 2014, 35, p 153–155. https://doi.org/10.1016/j.jallcom.2016.03.141

    Article  CAS  Google Scholar 

  13. F.M. Wang, J.P. Xie, Y. Li and A.Q. Wang, Dry-Sliding Tribological Characteristics of W80C20 Composite under of Magnetic Field, Chin. Sur. Eng., 2014, 27, p 76–79.

    CAS  Google Scholar 

  14. Yu. Li, Ch. Hou, L. Cao, Ch. Liu, Sh. Liang, F. Tang, X. Song and Z. Nie, Excellent Wear Resistance of Multicomponent Nanocrystalline W-Cu Based Composite, J. Alloys Compd., 2021, 861, p 158627. https://doi.org/10.1016/j.jallcom.2021.158627

    Article  CAS  Google Scholar 

  15. M. Jahangiri, M. Hashempour, H. Razavizadeh and H.R. Rezaie, A New Method to Investigate the Sliding Wear Behaviour of Materials based on Energy Dissipation: W–25 wt.%Cu Composite, Wear, 2012, 274–275, p 175–182. https://doi.org/10.1016/j.wear.2011.08.023

    Article  CAS  Google Scholar 

  16. X. Wang, X. Zhang, L. Zhao, Ch. Zhao, H. Zhang, Du. Ye, W. Zhang, G. Ya and P. Cao, Tungsten/copper Composite Sheets Prepared by a Novel Encapsulation Rolling TECHNIQUE, J. Alloys Compd., 2021, 884, p 161051. https://doi.org/10.1016/j.jallcom.2021.161051

    Article  CAS  Google Scholar 

  17. Ch. Hou, X. Song, F. Tang, L. Yurong, L. Cao, J. Wang and Z. Nie, W-Cu Composites with Submicron- and Nanostructures: Progress and Challenges, NPG Asia Mater., 2019, 11(1), p 74. https://doi.org/10.1038/s41427-019-0179-x

    Article  CAS  Google Scholar 

  18. K.S. Mohammed, A. Rahmat and A. Aziz, Self-Compacting High Density Tungsten–Bronze Composites, J. Mater. Process. Technol., 2013, 213, p 1088–1094. https://doi.org/10.1016/j.jmatprotec.2013.02.006

    Article  CAS  Google Scholar 

  19. M. Pezeshkian and I. Ebrahimzadeh, Investigating the Role of Metal Reinforcement Particles in Producing Cu/Ni/W Metal Matrix Composites via Friction Stir Processing: Microstructure, Microhardness, and Wear at High Temperature, Met. Mater. Int., 2023 https://doi.org/10.1007/s12540-023-01488-6

    Article  Google Scholar 

  20. V. Sharma, U. Prakash and B.V. Manoj Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134. https://doi.org/10.1016/j.jmatprotec.2015.04.019

    Article  CAS  Google Scholar 

  21. A. Zykova, A. Chumaevskii, A. Gusarova, D. Gurianov, T. Kalashnikova, N. Savchenko, E. Kolubaev and S. Tarasov, Evolution of Microstructure in friction Stir Processed Dissimilar CuZn37/AA5056 Stir Zone, Materials, 2021, 14(18), p 5208. https://doi.org/10.3390/ma14185208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.P. Zykova, S.Y. Tarasov, A.V. Chumaevskiy and E.A. Kolubaev, A Review of Friction Stir Processing of Structural Metallic Materials: Process, Properties, and Methods, Met., 2020, 10(6), p 772. https://doi.org/10.3390/met10060772

    Article  Google Scholar 

  23. A. Zykova, A. Vorontsov, A. Chumaevskii, D. Gurianov, A. Gusarova, E. Kolubaev and S. Tarasov, Structural Evolution of Contact Parts of the Friction Stir Processing Heat-Resistant Nickel Alloy Tool Used for Multi-Pass Processing of Ti6Al4V/(Cu+Al) System, Wear, 2022, 488–489, p 204138. https://doi.org/10.1016/j.wear.2021.204138

    Article  CAS  Google Scholar 

  24. Y. Ahuja, R. Ibrahim, A. Paradowska and D. Riley, Friction Stir Forming to Fabricate Copper-Tungsten Composite, J. Mater. Process. Technol., 2015, 217, p 222–231. https://doi.org/10.1016/j.jmatprotec.2014.11.024

    Article  CAS  Google Scholar 

  25. M. Sabbaghian, M. Shamanian, H.R. Akramifard and M. Esmailzadeh, Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of Cu-TiC Composite, Ceram. In., 2014, 40(8), p 12969–12976. https://doi.org/10.1016/j.ceramint.2014.04.158

    Article  CAS  Google Scholar 

  26. M. Barmouz and M.K.B. Givi, Fabrication of In Situ Cu/SiC Composites using Multi-Pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior, Compos. Part A Appl. Sci. Manuf., 2011, 42, p 1445–1453. https://doi.org/10.1016/j.compositesa.2011.06.010

    Article  CAS  Google Scholar 

  27. V. Rubtsov, A. Chumaevskii, A. Gusarova, E. Knyazhev, D. Gurianov, A. Zykova, T. Kalashnikova, A. Cheremnov, N. Savchenko, A. Vorontsov, V. Utyaganova, E. Kolubaev and S. Tarasov, Macro- and Microstructure of In Situ Composites Prepared by Friction Stir Processing of AA5056 Admixed with Copper Powders, Mater., 2023, 16, p 1070. https://doi.org/10.3390/ma16031070

    Article  CAS  Google Scholar 

  28. Y.P. Mironov, L.L. Meisner and A.I. Lotkov, The Structure of Titanium Nickelide Surface Layers Formed by Pulsed Electron-Beam Melting, Tech. Phys., 2008, 53, p 934–942. https://doi.org/10.1134/s1063784208070189/metrics

    Article  CAS  Google Scholar 

  29. R. Besson, M.-N. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel and A. Legris, Mechanisms of Formation of Al4Cu9 during Mechanical Alloying: An Experimental Study, Acta Mater. Mater., 2015, 87, p 216–224. https://doi.org/10.1016/j.actamat.2014.12.050

    Article  CAS  Google Scholar 

  30. Q. Zhang, W. Gong and W. Liu, Microstructure and Mechanical Properties of Dissimilar Al−Cu Joints by Friction Stir Welding, Trans. Nonferrous Met. Soc. China, 2015, 25, p 1779–1786. https://doi.org/10.1016/S1003-6326(15)63783-9

    Article  CAS  Google Scholar 

  31. A. Zykova, A. Panfilov, A. Chumaevskii, A. Vorontsov, D. Gurianov, N. Savchenko, E. Kolubaev and S. Tarasov, Decomposition of β′-Martensite in Annealing the Additively Manufactured Aluminum Bronze, Mater. Lett., 2023, 338, p 134064. https://doi.org/10.1016/j.matlet.2023.134064

    Article  CAS  Google Scholar 

  32. A. Zykova, A. Nikolaeva, A. Panfilov, A. Vorontsov, A. Nikonenko, A. Dobrovolsky, A. Chumaevskii, D. Gurianov, A. Filippov, N. Semenchuk, N. Savchenko, E. Kolubaev and S. Tarasov, Microstructures and Phases in Electron Beam Additively Manufactured Ti-Al-Mo-Zr-V/CuAl9Mn2, Alloy Mater., 2023, 16, p 4279. https://doi.org/10.3390/ma16124279

    Article  CAS  Google Scholar 

  33. J. Schell, P. Heilmann and D.A. Rigney, Friction and Wear of Cu–Ni Alloys, Wear, 1982, 75, p 205–220. https://doi.org/10.1016/0043-1648(82)90149-1

    Article  Google Scholar 

  34. B. Venkataraman and G. Sundararajan, The Sliding Wear Behaviour of Al–SiC Particulate Composites. II. The Characterization of Subsurface Deformation and Correlation with Wear Behavior, Acta Mater. Mater., 1996, 44, p 461–473. https://doi.org/10.1016/1359-6454(95)00218-9

    Article  CAS  Google Scholar 

  35. W. Czupryk, Frictional Transfer of Iron in Oxidative Wear Conditions during Lubricated Sliding, Wear, 2000, 237, p 288–294. https://doi.org/10.1016/S0043-1648(99)00360-9

    Article  CAS  Google Scholar 

  36. J.B. Singh, J.G. Wen and P. Bellon, Nanoscale Characterization of the Transfer Layer Formed During Dry Sliding of Cu–15wt.% Ni–8wt.% Sn Bronze Alloy, Acta Mater. Mater., 2008, 56(13), p 3053–3064. https://doi.org/10.1016/0043-1648(82)90149-1

    Article  CAS  Google Scholar 

  37. W. Cai and P. Bellon, Subsurface Microstructure Evolution and Deformation Mechanism of Ag–Cu Eutectic Alloy After Dry Sliding Wear, Wear, 2013, 303(1), p 602–610. https://doi.org/10.1016/j.wear.2013.04.006

    Article  CAS  Google Scholar 

  38. P.K. Wong, C.T. Kwok, H.C. Ma and D. Guo, Laser Fabrication of W-Reinforced Cu Layers II. Electrical Wear Behavior in Air and Synthetic Acid Rain, Mater. Chem. Phys., 2016, 177, p 118–130. https://doi.org/10.1016/j.matchemphys.2016.04.00

    Article  CAS  Google Scholar 

  39. S. Tarasov, V. Rubtsov and A. Kolubaev, Subsurface Shear Instability and Nanostructuring of Metals in Sliding, Wear, 2010, 268(1–2), p 59–66. https://doi.org/10.1016/j.wear.2009.06.027

    Article  CAS  Google Scholar 

  40. K.N. Kalashnikov, SYu. Tarasov, A.V. Chumaevskii, S.V. Fortuna, A.A. Eliseev and A.N. Ivanov, Towards Aging in a Multipass Friction Stir–Processed AA2024, Int. J. Adv. Manuf. Technol., 2019, 103, p 2121–2132. https://doi.org/10.1007/s00170-019-03631-3

    Article  Google Scholar 

  41. Y. Li, H. Fu, T. Ma, K. Wang, X. Yang and J. Lin, Microstructure and Wear Resistance of AlCoCrFeNi-WC/TiC Composite Coating by Laser Cladding, Mater Charact, 2022, 194, p 112479. https://doi.org/10.1016/j.matchar.2022.112479

    Article  CAS  Google Scholar 

  42. Y.D. Kim, N.L. Oh, S.-T. Oh and I.-H. Moon, Thermal Conductivity of W-Cu Composites at Various Temperatures, Mater. Lett., 2001, 51, p 420–424. https://doi.org/10.1016/S0167-577X(01)00330-5

    Article  CAS  Google Scholar 

  43. M. Jamil, N. He, W. Zhao, A.M. Khan, H. Xiang, M.K. Gupta and A. Iqbal, A Novel Low-Pressure Hybrid Dry Ice Blasting System For Improving the Tribological and Machining Characteristics of AISI-52100 Tool STEEL, J. Manuf. Process., 2022, 80, p 152–160. https://doi.org/10.1016/J.JMAPRO.2022.05.056

    Article  Google Scholar 

  44. B. Denkena, A. Krödel and A. Heckemeyer, Numerical and Experimental Analysis of Thermal and Mechanical Tool Load When Turning AISI 52100 with Ground Cutting Edge Microgeometries, CIRP J. Manuf. Sci. Technol., 2021, 35, p 494–501. https://doi.org/10.1016/J.CIRPJ.2021.08.006

    Article  Google Scholar 

Download references

Acknowledgments

The investigations have been carried out using the equipment of Share Use Centre “Nanotech” of the ISPMS SB RAS.

Funding

This research was funded by Government research assignment for ISPMS SB RAS, project FWRW-2024-0001.

Author information

Authors and Affiliations

Authors

Contributions

A.Z., N.S., A.C. and S.T. were involved in the conceptualization; A.Z., N.S., and A.C. contributed to the methodology; A.V. and N.S. contributed to the software; A.C., A.Z., and N.S. assisted in the validation; A.Z., N.S., A.C. and S.T. performed the formal analysis; A.Z., E.K., N. S., D.G., A.V., V.U., N.S. and A.C. contributed to the investigation; A. Chum. and E.K. contributed to the resources; A.C., A.Z., N.S., and A.C. curated the data; A.C., A.Z., N.S., and S.T. contributed to writing—original draft preparation; A.Z., N.S., and S.T. assisted in writing—review and editing; A.Z., E.K., N. S., D.G., A.V., V.U., N. S. and A.C. contributed to the visualization; A.Z. and S.T. contributed to the supervision; A.Z. and A.C. were involved in the project administration; A.C. acquired the funding. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sergei Tarasov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participation

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremnov, A., Zykova, A., Savchenko, N. et al. Surface CuAl9Mn2/W Composites Prepared by Multipass Friction Stir Processing: Microstructures, Phases, and Mechanical and Tribological Properties. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09388-5

Keywords

Navigation