Skip to main content
Log in

Corrosion Fatigue Failure Mechanism of Steels for Hydraulic Fracturing Pump Valve Box

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion fatigue behaviors of hydraulic fracturing pump materials of 30CrNi2Mo steel and 15-5PH steel were comparatively investigated under hydraulic fracturing to evaluate the mechanism of corrosion fatigue fracture. Experimental results show that higher corrosion fatigue strength is obtained for 15-5PH steel, although their tensile properties are similar. The fatigue cracks nucleate initially at the sample surface and connect with each other to form a large crack in the 30CrNi2Mo steel. However, the frequency of formation of corrosion void on the surface decreases and crack initiation gets delayed in the 15-5PH steel. Finally, the relationship among microstructure, defect feature, and damage mechanism are discussed. These results highlight the characteristics of corrosion crack initiation behavior in steels, which are significantly important in improving the safety and reliability of hydraulic fracturing pump when it suffers corrosion fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. H. Wang, S.Y. Yang, L.H. Han, H. Fan and Q.F. Jiang, Failure Analysis of Crankshaft of Fracturing Pump, Eng. Fail. Anal., 2020, 109, p 104378.

    Article  Google Scholar 

  2. Y.Q. Zheng and Y. Wang, Damage Evolution Simulation and Life Prediction of High-Strength Steel Wire under the Coupling of Corrosion and Fatigue, Corros. Sci., 2020, 164, p 108368.

    Article  CAS  Google Scholar 

  3. H. Al-Karawi, Corrosion Effect on the Efficiency of High-Frequency Mechanical Impact Treatment in Enhancing Fatigue Strength of Welded Steel Structures, J. Mater. Eng. Perform., 2022, 31, p 9151–9158.

    Article  CAS  Google Scholar 

  4. T. Jiang, J.J. Sun, H.J. Liu, Y.J. Wang, S.W. Guo, Y. Sun and Y.N. Liu, A High Performance Martensitic Stainless Steel Containing 1.5 wt.% Si, Mater. Design, 2017, 125, p 35–45.

    Article  CAS  Google Scholar 

  5. X. Chen, L. Yang, H.L. Dai and S.W. Shi, Exploring Factors Controlling Pre-corrosion Fatigue of 316L Austenitic Stainless steel in Hydrofluoric Acid, Eng. Fail. Anal., 2020, 113, p 104556.

    Article  CAS  Google Scholar 

  6. Y.C. Hua, J.Y. Zhao and M.R. Su, Experimental Study of Fatigue Fracture of Fracturing Pump Box Steel 43CrNi2MoV, J. Southwestern Pet. Inst., 1992, 14, p 74–83.

    Google Scholar 

  7. W. Sang, Causes and Preventive Measures of Cracks at Hydraulic End of Fracturing Pump, Petro Chem. Equip., 2013, 16(7), p 3.

    Google Scholar 

  8. R. Perez-Mora, T. Palin-Luc, C. Bathias and P.C. Paris, Very High Cycle Fatigue of a High Strength Steel under Sea Water Corrosion: a Strong Corrosion and Mechanical Damage Coupling, Int. J. Fatigue, 2015, 74, p 156–165.

    Article  CAS  Google Scholar 

  9. K. Mukahiwa, F. Scenini, M.G. Burke, N. Platts, D.R. Tice and J.W. Stairmand, Corrosion Fatigue and Microstructural Characterisation of type 316 Austenitic Stainless Steels Tested in PWR Primary Water, Corros. Sci., 2018, 131, p 57–70.

    Article  CAS  Google Scholar 

  10. Y.H. Huang, S.T. Tu and F.Z. Xuan, Pit to Crack Transition Behavior in Proportional and Non-Proportional Multiaxial Corrosion Fatigue of 304 Stainless Steel, Eng. Fract. Mech., 2017, 184, p 259–272.

    Article  Google Scholar 

  11. C.J. Wang, Cause Analysis and Countermeasures of Fracturing Pump Head crack, Heat Treat. Metals, 2014, 9, p 4.

    Google Scholar 

  12. Y.R. Feng and H.L. Li, Failure Analysis and Prevention of Pump Head, Oil Field Equip., 1989, 18(3), p 4.

    Google Scholar 

  13. A.N. Chamos, S.G. Pantelakis and V. Spiliadis, Fatigue Behaviour of Bare and Pre-corroded Magnesium Alloy AZ31, Mater. Des., 2010, 31(9), p 4130–4137.

    Article  CAS  Google Scholar 

  14. S.H. Xu and Y.D. Wang, Estimating the Effects of Corrosion Pits on the Fatigue Life of Steel Plate Based on the 3D Profile, Int. J. Fatigue, 2015, 72, p 27–41.

    Article  CAS  Google Scholar 

  15. J.A. Becerra, F.J. Jimenez, M. Torres, D.T. Sanchez and E. Carvajal, Failure Analysis of Reciprocating Compressor Crankshafts, Eng. Fail. Anal., 2011, 18, p 730–746.

    Article  Google Scholar 

  16. Y.D. Li, C.B. Liu, N. Xu, X.F. Wu, W.M. Guo and J.B. Shi, Case Studies in Engineering Failure Analysis a Failure Study of the Railway Rail Serviced for Heavy Cargo Trains, Eng. Fail. Anal., 2013, 1, p 243–248.

    Google Scholar 

  17. A.A. Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. Mccusker, J. McLeod, S. Pannil and Z. Wang, Squat Formation and the Occurrence of Two Distinct Classes of White Etching Layer on the Surface of Rail Steel, Int. J. Fatigue, 2017, 104, p 52–60.

    Article  Google Scholar 

  18. H. Yu and X. Xu, Fatigue Failure of High-Pressure Oil-Pipes of Truck Diesel Engine, Eng. Fail. Anal., 2019, 97, p 145–160.

    Article  Google Scholar 

  19. F.J. Espadafor, J.B. Villanueva and M.T. García, Analysis of a Diesel Generator Crankshaft Failure, Eng. Fail. Anal., 2009, 16, p 2333–2341.

    Article  CAS  Google Scholar 

  20. S. Majumdar, S. Roy and K.K. Ray, Fatigue Performance of Dual-Phase Steels for Automotive Wheel Application, Fatigue Fract. Eng. Mater. Struct., 2017, 40(3), p 315–332.

    Article  Google Scholar 

  21. T. Zhao, Z. Liu, C. Du, C. Dai, X. Li and B. Zhang, Corrosion Fatigue Crack Initiation and Initial Propagation Mechanism of E690 steel in Simulated Seawater, Mater. Sci. Eng. A, 2017, 708, p 181–192.

    Article  CAS  Google Scholar 

  22. G. Zhu, Y.C. Wu, M.L. Zhu and F.Z. Xuan, Towards a General Damage Law for Interior Micro-Defect Induced Fatigue Cracking in Martensitic Steels, Int. J. Fatigue, 2021, 153, p 106501.

    Article  CAS  Google Scholar 

  23. M.L. Zhu, L. Jin and F.Z. Xuan, Fatigue Life and Mechanistic Modeling of Interior Micro-Defect Induced Cracking in High Cycle and Very High Cycle Regimes, Acta Mater., 2018, 157, p 259–275.

    Article  CAS  Google Scholar 

  24. M. Masoumi, A. Sinatorac and H. Goldenstein, Role of Microstructure and Crystallographic Orientation in Fatigue Crack Failure Analysis of a Heavy Haul Railway Rail, Eng. Fail. Anal., 2019, 96, p 320–329.

    Article  CAS  Google Scholar 

  25. S.C. Li, W.C. Zhang, M.L. Zhu and F.Z. Xuan, On Specimen Design for High Cycle Fatigue Testing of Welded Joint, Int. J. Fatigue, 2020, 136, p 105597.

    Article  CAS  Google Scholar 

  26. S. Sarkar, C.S. Kumar and A.K. Nath, Investigation on the Mode of Failures and Fatigue Life of Laser-Based Powder Bed Fusion Produced Stainless Steel Parts Under Variable, Addit. Manuf., 2019, 25, p 71–83.

    CAS  Google Scholar 

  27. B. Wang, L. Wu and W.S. Xiao, Torsional Vibration Analysis of Transmission System for Fracturing Truck’s Mobile Unit, Oil Field Equip., 2014, 43(5), p 31–34.

    CAS  Google Scholar 

  28. C.S. Tan, X.L. Li, Q.Y. Sun, L. Xiao, Y.Q. Zhao and J. Sun, Effect of α-Phase Morphology on Low-Cycle Fatigue Behavior of TC21 Alloy, Int. J. Fatigue, 2015, 75, p 1–9.

    Article  CAS  Google Scholar 

  29. L.H. Han, M. Liu, S.J. Luo and T.J. Lu, Fatigue and Corrosion Fatigue Behaviors of G105 and S135 High-Strength Drill Pipe steels in Air and H2S Environment, Process. Saf. Environ. Prot., 2019, 124, p 63–74.

    Article  CAS  Google Scholar 

  30. S. Suresh, Fatigue of materials, Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  31. U. Lindstedt, B. Karlsson and M. Nystr, Small Fatigue Cracks in an Austenitic Stainless Steel, Fatigue Fract. Eng. Mater. Struct., 1998, 21(1), p 85–98.

    Article  CAS  Google Scholar 

  32. F. Farnoosh, D. Smyth-Boyle and X. Zhang, Fatigue of X65 Steel in the Sour Corrosive Environment—a novel experimentation and Analysis Method for Predicting Fatigue Crack initiation life from Corrosion Pits, Fatigue Fract. Eng. Mater. Struct., 2021, 44, p 1195–1208.

    Article  Google Scholar 

  33. V. Vignal, C. Voltz, S. Thiébaut, M. Demésy, O. Heintz and S. Guerraz, Pitting Corrosion of Type 316l Stainless Steel Elaborated by the Selective Laser Melting Method: Influence of Microstructure, J. Mater. Eng. Perform., 2021, 30, p 5050–5058.

    Article  CAS  Google Scholar 

  34. S.A. Tavara, M.D. Chapetti, J.L. Otegui and C. Manfredi, Influence of Nickel on the Susceptibility to Corrosion Fatigue of Duplex Stainless Steel Welds, Int. J. Fatigue, 2001, 23, p 619–626.

    Article  CAS  Google Scholar 

  35. J. Schijve, Fatigue of Structures and Materials, Springer, Netherlands, 2004.

    Google Scholar 

  36. R. Ebara, Corrosion Fatigue Crack Initiation Behavior of Stainless Steels, Proc. Eng., 2010, 2, p 1297–1306.

    Article  Google Scholar 

  37. L. Li, C.Q. Li, M. Mahmoodian and W.H. Shi, Corrosion Induced Degradation of Fatigue Strength of Steel in Service for 128 Years, Structures, 2020, 23, p 415–424.

    Article  Google Scholar 

  38. H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang and X.G. Li, Effect of Prior Austenite Grain Boundaries on Corrosion Fatigue Behaviors of E690 High Strength Low Alloy Steel in Simulated Marine Atmosphere, Mater. Sci. Eng. A, 2020, 773, p 138884.

    Article  CAS  Google Scholar 

  39. H. Mughrabi, Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage, Metall. Mater. Trans. B, 2009, 40(4), p 431–453.

    Article  Google Scholar 

  40. H.C. Wu, B. Yang, S.L. Wang and M.X. Zhang, Effect of Oxidation Behavior on the Corrosion Fatigue Crack Initiation and Propagation of 316LN Austenitic Stainless Steel in High Temperature Water, Mater. Sci. Eng. A, 2015, 633, p 176–183.

    Article  CAS  Google Scholar 

  41. W.M. Zhao, Y.X. Wang, T.M. Zhang and Y. Wang, Study on the Mechanism of high-Cycle Corrosion Fatigue Crack Initiation in X80 Steel, Corros. Sci., 2012, 57, p 99–103.

    Article  CAS  Google Scholar 

  42. H.C. Wu, B. Yang, Y.Z. Shi, Q. Gao and Y.Q. Wang, Crack Initiation Mechanism of Z3CN20.09M Duplex Stainless Steel During Corrosion Fatigue in Water and Air at 290 °C, J. Mater. Sci. Technol., 2015, 31, p 1144–1150.

    Article  Google Scholar 

  43. M.E. May, T. Palin-Luc, N. Saintier and O. Devos, Effect of Corrosion on the High Cycle Fatigue Strength of Martensitic Stainless Steel X12CrNiMoV12-3, Int. J. Fatigue, 2013, 47, p 330–339.

    Article  Google Scholar 

  44. C. Wei, S. Zhou, M. Li and S. Zhang, Numerical Investigation on Fatigue Crack Growth of Fracturing Pump Head Using Cohesive Zone Model, Theoret. Appl. Fract. Mech., 2020, 107, p 102564.

    Article  CAS  Google Scholar 

  45. S. Qin, C. Zhang, B. Zhang, H. Ma and M. Zhao, Effect of Carburizing Process on High Cycle Fatigue Behavior of 18CrNiMo7-6 Steel, J. Market. Res., 2022, 16, p 1136–1149.

    CAS  Google Scholar 

  46. K. Tazoe, S. Hamada and H. Noguchi, Fatigue Crack Growth Behavior of JIS SCM440 Steel Near Fatigue Threshold in 9MPa Hydrogen Gas Environment, Int. J. Hydrog. Energy, 2017, 42(18), p 13158–13170.

    Article  CAS  Google Scholar 

  47. R.M. Zhang, K. Ma, W.Z. Peng and J.Y. Zheng, Effects of Hydrogen Pressure on Hydrogen-Assisted Fatigue Crack Growth of Cr-Mo Steel, Theoret. Appl. Fract. Mech., 2024, 129, p 104202.

    Article  CAS  Google Scholar 

  48. E. Rezig, P.E. Irving and M.J. Robinson, Development and Early Growth of Fatigue Cracks from Corrosion Damage in High Strength Stainless Steel, Proc. Eng., 2010, 2, p 387–396.

    Article  CAS  Google Scholar 

  49. H.K. Rafi, T.L. Starr and B.E. Stucker, A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti-6Al-4V and 15–5 PH Stainless Steel Parts Made by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2013, 69, p 1299–1309.

    Article  Google Scholar 

  50. A.K. Jha, K. Sreekumar and P.P. Sinha, Role of Electro-Discharge Machining on the Fatigue Performance of 15–5PH Stainless Steel Component, Eng. Fail. Anal., 2010, 17, p 1195–1204.

    Article  CAS  Google Scholar 

  51. J. Ryan Donahue and J.T. Burns, Effect of Chloride Concentration on the Corrosion–Fatigue Crack Behavior of an Age-Hardenable Martensitic Stainless Steel, Int. J. Fatigue, 2016, 91, p 79–99.

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (No. 52074346, 52001253), the Scientific Research Program Funded by Shaanxi Provincial Education Department (21JY028), Key Research and development plan of Shaanxi Province (2023-YBG-Y431).

Author information

Authors and Affiliations

Authors

Contributions

HW supervised the project and analyzed the data. ED and SJ provided the material and provided valuable comments for the work. CST designed, performed the experiments, analyzed the data, and wrote the paper. YDF performed the experiments. All authors contributed to discussions of the results.

Corresponding author

Correspondence to Changsheng Tan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Dang, E., Jiang, S. et al. Corrosion Fatigue Failure Mechanism of Steels for Hydraulic Fracturing Pump Valve Box. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09367-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09367-w

Keywords

Navigation