Skip to main content
Log in

Effects of Trace La on the Aging Properties of the Cu-Ti-Zr Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu-2Ti-0.3Zr and Cu-2Ti-0.3Zr-0.2La alloys were prepared by vacuum melting, and their mechanical properties and conductivity were measured after aging treatment. Both alloys were aged at 450 °C for 30 min to obtain optimum properties, and the microhardness of the Cu-Ti-Zr-La alloy increased by 8.5% and the strength by 5% compared to the Cu-Ti-Zr alloy. Characterization of the alloys by EBSD revealed that the addition of La inhibits grain growth, refines the grains and enhances the texture. The Cu4Ti phase precipitated during the Cu-Ti-Zr alloy’s aging process, and the Cu5Zr phase precipitated after La was added. It was found by analyzing the strengthening mechanisms of the Cu-Ti-Zr-La alloy that precipitation strengthening significantly contributes to the alloy strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Lei, Z. Xiao, W. Hu, B. Derby, and Z. Li, Phase Transformation Behaviors and Properties of a High Strength Cu-Ni-Si Alloy, Mater. Sci. Eng. A, 2017, 697, p 37–47. https://doi.org/10.1016/j.msea.2017.05.001

    Article  CAS  Google Scholar 

  2. K.X. Song, Y.F. Geng, Y.J. Ban, Y. Zhang, Z. Li, X.J. Mi, J. Cao, Y.J. Zhou, and X.B. Zhang, Effect of Strain Rates on Dynamic Deformation Behavior of Cu-20Ag Alloy, J. Mater. Res. Technol., 2021, 79, p 75–87. https://doi.org/10.1016/j.jmst.2020.11.043

    Article  CAS  Google Scholar 

  3. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, K.X. Song, B.J. Wang, and Y. Liu, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146, p 35–43. https://doi.org/10.1016/j.vacuum.2017.09.017

    Article  CAS  Google Scholar 

  4. R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev, Deformation Microstructures, Strengthening Mechanisms, and Electrical Conductivity in a Cu-Cr-Zr Alloy, Mater. Sci. Eng. A, 2015, 629, p 29–40. https://doi.org/10.1016/j.msea.2015.01.065

    Article  CAS  Google Scholar 

  5. S.L. Tang, M. Zhou, X. Li, Y. Zhang, D.Y. Xu, Z.Y. Zhang, B.H. Tian, Y.L. Jia, Y. Liu, A.A. Volinsky, and E.S. Marchenko, Microstructure and Hot Deformation Behavior of the Cu-1Ni-0.9Sn-0.5Ti-0.3Cr Alloy, Mater. Today Commun., 2022, 31, p 103771. https://doi.org/10.1016/j.mtcomm.2022.103771

    Article  CAS  Google Scholar 

  6. Y.F. Geng, X. Li, Y. Zhang, Y.L. Jia, H.L. Zhou, B.H. Tian, Y. Liu, A.A. Volinsky, X.H. Zhang, K.X. Song, P. Liu, and X.H. Chen, Microstructure Evolution of Cu-1.0Co-0.65Si-0.1Ti Alloy During Hot Deformation, Vacuum, 2020, 177, p 109376. https://doi.org/10.1016/j.vacuum.2020.109376

    Article  CAS  Google Scholar 

  7. A. Meng, J.F. Nie, K. Wei, H.J. Kang, Z.J. Liu, and Y.H. Zhao, Optimization of Strength, Ductility and Electrical Conductivity of a Cu-Cr-Zr Alloy by Cold Rolling and Aging Treatment, Vacuum, 2019, 167, p 329–335. https://doi.org/10.1016/j.vacuum.2019.06.027

    Article  CAS  Google Scholar 

  8. W. Wang, H.J. Kang, Z.N. Chen, Z.J. Chen, C.L. Zou, R.G. Li, G.M. Yin, and T.M. Wang, Effects of Cr and Zr Additions on Microstructure and Properties of Cu-Ni-Si Alloys, Mater. Sci. Eng. A, 2016, 673, p 378–390. https://doi.org/10.1016/j.msea.2016.07.021

    Article  CAS  Google Scholar 

  9. J. Chalon, J.D. Guérin, L. Dubar, A. Dubois, and E.S. Puchi-Cabrera, Characterization of the Hot-Working Behavior of a Cu-Ni-Si Alloy, Mater. Sci. Eng. A, 2016, 667, p 77–86. https://doi.org/10.1016/j.msea.2016.04.061

    Article  CAS  Google Scholar 

  10. Y.C. Tang, Y.L. Kang, L.J. Yue, and X.L. Jiao, Mechanical Properties Optimization of a Cu-Be-Co-Ni Alloy by Precipitation Design, J. Alloys Compd., 2017, 695, p 613–625. https://doi.org/10.1016/j.jallcom.2016.11.014

    Article  CAS  Google Scholar 

  11. Y.C. Tang, Y.L. Kang, L.J. Yue, and X.L. Jiao, The Effect of Aging Process on the Microstructure and Mechanical Properties of a Cu-Be-Co-Ni Alloy, Mater. Des., 2015, 85, p 332–341. https://doi.org/10.1016/j.matdes.2015.06.157

    Article  CAS  Google Scholar 

  12. Y.C. Tang, G.M. Zhu, Y.L. Kang, L.J. Yue, and X.L. Jiao, Effect of Microstructure on the Fatigue Crack Growth Behavior of Cu-Be-Co-Ni Alloy, J. Alloys Compd., 2016, 663, p 784–795. https://doi.org/10.1016/j.jallcom.2015.12.017

    Article  CAS  Google Scholar 

  13. S. Nagarjuna, U.C. Babu, and P. Ghosal, Effect of Cryo-Rolling on Age Hardening of Cu-1.5 Ti Alloy, Mater. Sci. Eng. A, 2008, 491, p 331–337. https://doi.org/10.1016/j.msea.2008.02.014

    Article  CAS  Google Scholar 

  14. F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu-Ti-C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74. https://doi.org/10.1016/j.matdes.2014.04.034

    Article  CAS  Google Scholar 

  15. C. Li, X.H. Wang, B. Li, J. Shi, Y.F. Liu, and P. Xiao, Effect of Cold Rolling and Aging Treatment on the Microstructure and Properties of Cu-3Ti-2Mg Alloy, J. Alloys Compd., 2020, 818, p 152915. https://doi.org/10.1016/j.jallcom.2019.152915

    Article  CAS  Google Scholar 

  16. X. Wang, Z. Xiao, W.T. Qiu, Z. Li, and F. Liu, The Evolution of Microstructure and Properties of a Cu-Ti-Cr-Mg-Si Alloy with High Strength During the Multi-Stage Thermomechanical Treatment, Mater. Sci. Eng. A, 2021, 803, p 140510. https://doi.org/10.1016/j.msea.2020.140510

    Article  CAS  Google Scholar 

  17. L. Huang, L.J. Peng, X.J. Mi, G. Zhao, G.J. Huang, H.F. Xie, and W.J. Zhang, Relationship Between Microstructure and Properties of High-Strength Cu-Ti-Cr Alloys During Aging, J. Alloys Compd., 2023, 942, p 168865. https://doi.org/10.1016/j.jallcom.2023.168865

    Article  CAS  Google Scholar 

  18. W. Huan, X.Y. Dai, P.J. Han, C.Z. Zhou, Y.H. Wei, and L.F. Hou, Age Hardening Studies of a Cu-4Ti-Cr-Fe Alloy, Mater. Sci. Technol., 2019, 35, p 1848–1855. https://doi.org/10.1080/02670836.2019.1651474

    Article  CAS  Google Scholar 

  19. L. Rong, Z. Xiao, Z. Li, X.P. Meng, and X. Wang, Work Hardening Behavior and Microstructure Evolution of a Cu-Ti-Cr-Mg Alloy During Room Temperature and Cryogenic Rolling, Materials, 2023, 16, p 424. https://doi.org/10.3390/ma16010424

    Article  CAS  Google Scholar 

  20. X. Wang, Z. Li, Z. Xiao, and W.T. Qiu, Microstructure Evolution and Hot Deformation Behavior of Cu-3Ti-0.1Zr Alloy with Ultra-High Strength, Trans. Nonferrous Met. Soc. China, 2020, 30, p 2737–2748. https://doi.org/10.1016/S1003-6326(20)65416-4

    Article  CAS  Google Scholar 

  21. H. Doi, S. Suzuki, K. Mimura, M. Isshiki, and Y. Waseda, Electrical Conductivity and Hardness of Quenched and Aged High-Purity Cu-Ti-Al Alloys, J. Jpn. I. Met., 2004, 68, p 78–81. https://doi.org/10.2320/jinstmet.68.78

    Article  CAS  Google Scholar 

  22. W.J. Liu, J. Li, X. Chen, M.H. Ji, X.P. Xiao, H. Wang, and B. Yang, Effect of Vanadium on the Microstructure and Kinetics of Discontinuous Precipitation in Cu-3.2Ti-0.2Fe Alloy, J. Mater. Res. Technol., 2021, 14, p 121–136. https://doi.org/10.1016/j.jmrt.2021.06.045

    Article  CAS  Google Scholar 

  23. I.S. Batra, A. Laik, G.B. Kale, G.K. Dey, and U.D. Kulkarni, Microstructure and Properties of a Cu-Ti-Co Alloy, Mater. Sci. Eng. A, 2005, 402, p 118–125. https://doi.org/10.1016/j.msea.2005.04.015

    Article  CAS  Google Scholar 

  24. S.F. Fang, Prediction of the Hardness of Cu-Ti-Co Alloy Using Machine Learning Techniques, Key Eng. Mater., 2018, 777, p 372–376. https://doi.org/10.4028/www.scientific.net/KEM.777.372

    Article  Google Scholar 

  25. S. Nagarjuna, K.K. Sharma, I. Sudhakar, and D.S. Sarma, Age Hardening Studies in a Cu-4.5 Ti-0.5 Co Alloy, Mater. Sci. Eng. A, 2001, 313, p 251–260. https://doi.org/10.1016/S0921-5093(00)01834-7

    Article  Google Scholar 

  26. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Effect of Prior Cold Work on Age Hardening of Cu-4Ti-1Cr Alloy, Mater. Sci. Eng. A, 2005, 404(1–2), p 305–313. https://doi.org/10.1016/j.msea.2005.05.072

    Article  CAS  Google Scholar 

  27. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Effect of Prior Cold Work on Age Hardening of Cu-3Ti-1Cr Alloy, Mater. Char., 2006, 57(4–5), p 348–357. https://doi.org/10.1016/j.matchar.2006.02.017

    Article  CAS  Google Scholar 

  28. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Precipitation Hardening of Cu-Ti-Cr Alloys, Mater. Sci. Eng. A, 2004, 371(1–2), p 291–305. https://doi.org/10.1016/j.msea.2003.12.002

    Article  CAS  Google Scholar 

  29. T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, and E. Okunishi, Aging Behavior of Cu-Ti-Al Alloy Observed by Transmission Electron Microscopy, J. Mater. Sci., 2008, 43, p 3761–3768. https://doi.org/10.1007/s10853-007-2233-2

    Article  CAS  Google Scholar 

  30. X.H. Wang, C.Y. Chen, T.T. Guo, J.T. Zou, and X.H. Yang, Microstructure and Properties of Ternary Cu-Ti-Sn Alloy, J. Mater. Eng. Perform., 2015, 24, p 2738–2743. https://doi.org/10.1007/s11665-015-1483-4

    Article  CAS  Google Scholar 

  31. X.M. Cao, H.Q. Li, C.J. Xiang, C.X. Yang, and F.A. Guo, Effect of Zr on heat-resistance of Cu-Ti alloy, Hot Working Technol., 2008, 14, p 16–18. https://doi.org/10.14158/j.cnki.1001-3814.2008.14.005

    Article  Google Scholar 

  32. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Influence of Prior Cold Work on Age Hardening of Cu-Ti-Zr Alloys, Mater. Sci. Technol., 2005, 21(10), p 1171–1180. https://doi.org/10.1179/174328405X58922

    Article  CAS  Google Scholar 

  33. S.L. Tang, M. Zhou, Y. Zhang, D.Y. Xu, Z.Y. Zhang, X.H. Zheng, D. Li, X. Li, B.H. Tian, Y.L. Jia, Y. Liu, A.A. Volinsky, and E.S. Marchenko, Improved Microstructure, Mechanical Properties and Electrical Conductivity of the Cu-Ni-Sn-Ti-Cr Alloy Due to Ce Micro-Addition, Mater. Sci. Eng. A, 2023, 871, p 144910. https://doi.org/10.1016/j.msea.2023.144910

    Article  CAS  Google Scholar 

  34. Z.Y. Zhang, M. Zhou, Y. Zhang, S.L. Tang, D.Y. Xu, B.H. Tian, X. Li, Y.L. Jia, Y. Liu, and A.A. Volinsky, Ce Effects on Deformation-Induced Microstructure Evolution in Cu-Ti-Ni-Mg Alloys, Adv. Eng. Mater., 2023, 25, p 2201913. https://doi.org/10.1002/adem.202201913

    Article  CAS  Google Scholar 

  35. H. Li, P. Chen, Z.X. Wang, F. Zhu, R.G. Song, and Z.Q. Zheng, Tensile Properties, Microstructures and Fracture Behaviors of an Al-Zn-Mg-Cu Alloy During Ageing After Solution Treating and Cold-Rolling, Mater. Sci. Eng. A, 2019, 742, p 798–812. https://doi.org/10.1016/j.msea.2018.03.098

    Article  CAS  Google Scholar 

  36. Y.K. Xie, Y.L. Deng, Y. Wang, and X.B. Guo, Effect of Asymmetric Rolling and Subsequent Ageing on the Microstructure, Texture and Mechanical Properties of the Al-Cu-Li Alloy, J. Alloys Compd., 2020, 836, p 155445. https://doi.org/10.1016/j.jallcom.2020.155445

    Article  CAS  Google Scholar 

  37. S.L. Fu, P. Liu, X.H. Chen, H.L. Zhou, F.C. Ma, W. Li, and K. Zhang, Effect of Aging Process on the Microstructure and Properties of Cu-Cr-Ti Alloy, Mater. Sci. Eng. A, 2021, 802, p 140598. https://doi.org/10.1016/j.msea.2020.140598

    Article  CAS  Google Scholar 

  38. D.R. Curran, L. Seaman, and D.A. Shockey, Dynamic Failure of Solids, Phys. Rep., 1987, 147(5–6), p 253–388. https://doi.org/10.1016/0370-1573(87)90049-4

    Article  CAS  Google Scholar 

  39. C. Li, H. Tan, W.M. Wu, S. Zhao, and H.B. Zhang, Effect of Electropulsing Treatment on Microstructure and Tensile Fracture Behavior of Nanocrystalline Ni Foil, Mater. Sci. Eng. A, 2016, 657, p 347–352. https://doi.org/10.1016/j.msea.2016.01.075

    Article  CAS  Google Scholar 

  40. J.W. Li, J. Xu, B. Guo, D.B. Shan, and T.G. Langdon, Shear Fracture Mechanism in Micro-Tension of an Ultrafine-Grained Pure Copper Using Synchrotron Radiation X-ray Tomography, Scr. Mater., 2017, 132, p 25–29. https://doi.org/10.1016/j.scriptamat.2017.01.021

    Article  CAS  Google Scholar 

  41. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez, Study by EBSD of the Development of the Substructure in a Hot Deformed 304 Stainless Steel, Mater. Sci. Eng. A, 2005, 394(1–2), p 445–454. https://doi.org/10.1016/j.msea.2004.11.049

    Article  CAS  Google Scholar 

  42. C. Haase, and L.A. Barrales-Mora, Influence of Deformation and Annealing Twinning on the Microstructure and Texture Evolution of Face-Centered Cubic High Entropy Alloys, Acta Mater., 2018, 150, p 88–103. https://doi.org/10.1016/j.actamat.2018.02.048

    Article  CAS  Google Scholar 

  43. Y.F. Geng, Y.J. Ban, X. Li, Y. Zhang, Y.L. Jia, B.H. Tian, M. Zhou, Y. Liu, A.A. Volinsky, K.X. Song, and S.L. Tang, Excellent Mechanical Properties and High Electrical Conductivity of Cu-Co-Si-Ti Alloy Due to Multiple Strengthening, Mater. Sci. Eng. A, 2021, 821, p 141639. https://doi.org/10.1016/j.msea.2021.141639

    Article  CAS  Google Scholar 

  44. H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu-Zn-Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61(8), p 2769–2782. https://doi.org/10.1016/j.actamat.2012.09.036

    Article  CAS  Google Scholar 

  45. X.W. Zuo, K. Han, C.C. Zhao, R.M. Niu, and E.G. Wang, Microstructure and Properties of Nanostructured Cu-28wt%Ag Microcomposite Deformed After Solidifying Under a High Magnetic Field, Mater. Sci. Eng. A, 2014, 619, p 319–327. https://doi.org/10.1016/j.msea.2014.09.070

    Article  CAS  Google Scholar 

  46. J. Freudenberger, J. Lyubimova, A. Gaganov, H. Witte, A.L. Hickman, H. Jones, and M. Nganbe, Non-destructive Pulsed Field Cu Ag-Solenoids, Mater. Sci. Eng. A, 2010, 527(7–8), p 2004–2013. https://doi.org/10.1016/j.msea.2009.11.038

    Article  CAS  Google Scholar 

  47. S.C. Wang, Z. Zhu, and M.J. Starink, Estimation of Dislocation Densities in Cold Rolled Al-Mg-Cu-Mn Alloys by Combination of Yield Strength Data, EBSD and Strength Models, J. Microsc., 2005, 217, p 174–178. https://doi.org/10.1111/j.1365-2818.2005.01449.x

    Article  CAS  PubMed  Google Scholar 

  48. Y. Liu, Z. Li, Y.X. Jiang, Y. Zhang, Z.Y. Zhou, and Q. Lei, The Microstructure Evolution and Properties of a Cu-Cr-Ag Alloy During Thermal-Mechanical Treatment, J. Mater. Res., 2017, 32(7), p 1324–1332. https://doi.org/10.1557/jmr.2017.17

    Article  CAS  Google Scholar 

  49. Y.K. Wu, Y. Li, J.Y. Lu, S. Tan, F. Jiang, and J. Sun, Correlations Between Microstructures and Properties of Cu-Ni-Si-Cr Alloy, Mater. Sci. Eng., 2018, 731, p 403–412. https://doi.org/10.1016/j.msea.2018.06.075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52071134), the Joint Foundation for Science and Technology Research and Development Plan of Henan Province (232103810030, 232103810031), the Program for Innovative Research Team at the University of the Henan Province (22IRTSTHN001), the China Postdoctoral Science Foundation (2023TQ0107), Key Research and Development Program of the Jiangxi Province (20224BBE52002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhou, Jin Zou or Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhou, M., Tian, B. et al. Effects of Trace La on the Aging Properties of the Cu-Ti-Zr Alloys. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09352-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09352-3

Keywords

Navigation