Skip to main content
Log in

Influence of High-Velocity Oxy-fuel Sprayed Cr3C2-NiCr Coating on Corrosion and Wear Properties of AISI 2205

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Cr3C2/10%NiCr layer was deposited on the AISI 2205 duplex stainless steel by the HVOF technique. Microstructural, tribological and corrosion behaviors of the coated and uncoated samples were investigated. The characterization studies were carried out by scanning electron microscopy, energy dispersive spectroscopy and optical microscopy. Moreover, dry sliding wear tests, corrosion tests and hardness measurements were performed to reveal the influence of Cr3C2-10%NiCr on the properties of AISI 2205 duplex stainless steel. Microstructural analysis revealed that proper bonding was achieved at the substrate-coating interface. On the other hand, it was observed that the coating structure consisted of chromium carbides and nickel-chromium binders. According to the corrosion test results, it was observed that the coating protected its structure and delayed the corrosion damage of the AISI 2205 alloy. The wear rate of the AISI 2205 alloy was reduced from 73.32 ± 5.28 × 10−5 mm3·(Nmm)−1 to 6.97 ± 0.61 × 10−5 mm3·(Nmm)−1 with Cr3C2-10%NiCr coating, as a result of the wear tests. In conclusion, test results showed that the Cr3C2-NiCr layer improved the corrosion and wear behavior of the AISI 2205 duplex stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, K. Bettahar, and N. Kherrouba, Effect of Solution Treatment Temperature on the Precipitation Kinetic of σ-Phase in 2205 Duplex Stainless Steel Welds, Mater. Sci. Eng. A, 2008, 496(1-2), p 447–454. https://doi.org/10.1016/j.msea.2008.06.024

    Article  CAS  Google Scholar 

  2. R. Francis and G. Byrne, Duplex Stainless Steels—Alloys for the 21st Century, Metals, 2021, 11(5), p 836. https://doi.org/10.3390/met11050836

    Article  CAS  Google Scholar 

  3. S.K. Ghosh and S. Mondal, High Temperature Ageing Behaviour of a Duplex Stainless Steel, Mater Charact, 2008, 59(12), p 1776–1783. https://doi.org/10.1016/j.matchar.2008.04.008

    Article  CAS  Google Scholar 

  4. A. Kisasoz, S. Gurel, and A. Karaaslan, Effect of Annealing Time and Cooling Rate on Precipitation Processes in a Duplex Corrosion-Resistant Steel, Met. Sci. Heat Treat., 2016, 57(9-10), p 544–547. https://doi.org/10.1007/s11041-016-9919-5

    Article  CAS  Google Scholar 

  5. V.A. Hosseini, L. Karlsson, S. Wessman, and N. Fuertes, Effect of Sigma Phase Morphology on the Degradation of Properties in a Super Duplex Stainless Steel, Materials, 2018, 11(6), p 933. https://doi.org/10.3390/ma11060933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E.A. Melo and R. Magnabosco, Influence of the Heterogeneous Nucleation Sites on the Kinetics of Intermetallic Phase Formation in Aged Duplex Stainless Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, 48(11), p 5273–5284. https://doi.org/10.1007/s11661-017-4299-z

    Article  CAS  Google Scholar 

  7. E.M. Cojocaru et al., Influence of Ageing Treatment on Microstructural and Mechanical Properties of a Solution Treated UNS S32750/EN 1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy, J. Market. Res., 2020, 9(4), p 8592–8605. https://doi.org/10.1016/j.jmrt.2020.05.127

    Article  CAS  Google Scholar 

  8. A. Kisasoz, A. Karaaslan, and Y. Bayrak, Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205, Met. Sci. Heat Treatm., 2017, 58(11-12), p 704–706. https://doi.org/10.1007/s11041-017-0081-5

    Article  CAS  Google Scholar 

  9. R.O. Sousa, P. Lacerda, P.J. Ferreira, and L.M.M. Ribeiro, On the Precipitation of Sigma and Chi Phases in a Cast Super Duplex Stainless Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50(10), p 4758–4778. https://doi.org/10.1007/s11661-019-05396-6

    Article  CAS  Google Scholar 

  10. R. Wang, Precipitation of Sigma Phase in Duplex Stainless Steel and Recent Development on its Detection by Electrochemical Potentiokinetic Reactivation: A Review, Corros. Commun., 2021, 2, p 41–54. https://doi.org/10.1016/j.corcom.2021.08.001

    Article  Google Scholar 

  11. Y. Xiao et al., Corrosion Behavior of 2205 Duplex Stainless Steel in NaCl Solutions Containing Sulfide İons, Corros. Sci., 2022, 200, p 110240. https://doi.org/10.1016/j.corsci.2022.110240

    Article  CAS  Google Scholar 

  12. Y. Zhou and D.L. Engelberg, Fast Testing of Ambient Temperature Pitting Corrosion in Type 2205 Duplex Stainless Steel by Bipolar Electrochemistry Experiments, Electrochem. Commun., 2020, 117, p 106779. https://doi.org/10.1016/j.elecom.2020.106779

    Article  CAS  Google Scholar 

  13. C. Örnek, K. Davut, M. Kocabaş, A. Bayatlı, and M. Ürgen, Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte, Corros. Mater. Degrad., 2021, 2, p 397–411. https://doi.org/10.3390/cmd2030021

    Article  Google Scholar 

  14. D.D.S. Silva, T.A. Simões, D.A. Macedo, A.H.S. Bueno, S.M. Torres, and R.M. Gomes, Microstructural İnfluence of Sigma Phase on Pitting Corrosion Behavior of Duplex Stainless Steel/NaCl Electrolyte Couple, Mater. Chem. Phys., 2021, 259, p 124056. https://doi.org/10.1016/j.matchemphys.2020.124056

    Article  CAS  Google Scholar 

  15. Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, and Y. Wu, Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel, Materials, 2014, 6(9), p 6604–6619. https://doi.org/10.3390/ma7096604

    Article  Google Scholar 

  16. H. Hwang and Y. Park, Effects of Heat Treatment on the Phase Ratio and Corrosion Resistance of Duplex Stainless Steel, Mater. Trans., 2009, 50(6), p 1548–1552. https://doi.org/10.2320/matertrans.MER2008168

    Article  CAS  Google Scholar 

  17. F. Marques, W.M. Da Silva, J.M. Pardal, S.S.M. Tavares, and C. Scandian, Influence of Heat Treatments on the Micro-abrasion Wear Resistance of a Superduplex Stainless Steel, Wear, 2011, 271(9-10), p 1288–1294. https://doi.org/10.1016/j.wear.2010.12.087

    Article  CAS  Google Scholar 

  18. M.B. Davanegeri, S. Narendranath, and R. Kadoli, Influence of Heat Treatment on Microstructure, Hardness and Wear Behaviour of super Duplex Stainless Steel AISI 2507, Am. J. Mater. Sci., 2015, 5, p 48–52. https://doi.org/10.5923/c.materials.201502.10

    Article  Google Scholar 

  19. J.L. del Abra-Arzola, M.A. Garcia-Renteria, V.I. Cruz-HErnandez, J. Garcia-Guerra, V.H. Martinez-Landeros, L.A. Falcon-Franco, and F.F. Curiel-Lopez, Study of the Effect of sigma Phase Precipitation on the Sliding Wear and Corrosion Behaviour of Duplex Stainless Steel AISI 2205, Wear, 2018, 400-401, p 43–51. https://doi.org/10.1016/j.wear.2017.12.019

    Article  CAS  Google Scholar 

  20. J.K. Sahu, U. Krupp, R.N. Ghosj, and H.J. Christ, Effect of 475 °C Embrittlement on the Mechanical Properties of Duplex Stainless Steel, Mater. Sci. Eng. A, 2009, 508, p 1–14. https://doi.org/10.1016/j.msea.2009.01.039

    Article  CAS  Google Scholar 

  21. M. Pohl and O. Storz, Sigma-Phase in Duplex-Stainless Steels, Z. Met., 2004, 95(7), p 631–638.

    CAS  Google Scholar 

  22. H. Sieurin and R. Sandström, Sigma Phase Precipitation in Duplex Stainless Steel 2205, Mater. Sci. Eng. A, 2007, 444, p 271–276. https://doi.org/10.1016/j.msea.2006.08.107

    Article  CAS  Google Scholar 

  23. L.K. de Paula Inácio, W. Wolf, B.C.B. de Leucas, G.C. Stumpf, and D.B. Santos, Microtexture Evolution of Sigma Phase in an Aged Fine-Grained 2205 Duplex Stainless Steel, Mater Charact, 2021, 171, p 110802. https://doi.org/10.1016/j.matchar.2020.110802

    Article  CAS  Google Scholar 

  24. R. Subbiah, V. Vinod Kumar, and G. Lakshmi Prasanna, Wear Analysis of Treated Duplex Stainless Steel Material by Carburizing Process—A Review, Mater. Today: Proc., 2019, 26, p 2946–2952. https://doi.org/10.1016/j.matpr.2020.02.608

    Article  CAS  Google Scholar 

  25. O. Palma Calabokis, Y. Núñez de la Rosa, C.M. Lepienski, R. Perito Cardoso, and P.C. Borges, Crevice and Pitting Corrosion of Low Temperature Plasma Nitrided UNS S32750 Super Duplex Stainless Steel, Surf. Coat. Technol., 2021, 413, p 127095. https://doi.org/10.1016/j.surfcoat.2021.127095

    Article  CAS  Google Scholar 

  26. J.O.P. Neto et al., Wear and Corrosion Study of Plasma Nitriding F53 Super Duplex Stainless Steel, Mater. Res., 2016, 19(6), p 1241–1252. https://doi.org/10.1590/1980-5373-MR-2015-0656

    Article  CAS  Google Scholar 

  27. R. Goyal, B.S. Sidhu, and V. Chawla, Hot Corrosion Performance of Plasma-Sprayed Multiwalled Carbon Nanotube-Al2O3 Composite Coatings in a coal-Fired Boiler at 900 °C, J. Mater. Eng. Perform., 2020, 29, p 5738–5749. https://doi.org/10.1007/s11665-020-05070-8

    Article  CAS  Google Scholar 

  28. R. Goyal, B. Sidhu, and V. Chawla, Characterization of Plasma-Sprayed Carbon Nanotube (CNT)-Reinforced Alumina Coatings on ASME-SA213-T11 Boiler Tube Steel, Int. J. Adv. Manuf. Technol., 2017, 92(9-12), p 3225–3235. https://doi.org/10.1007/s00170-017-0405-z

    Article  Google Scholar 

  29. G. Singh, N. Bala, V. Chawla, and Y.K. Singla, Hot Corrosion Behavior of HVOF-Sprayed Carbide based Composite Coatings for Boiler Steel in Na2SO4-60% V2O5 Environment at 900° C under Cyclic Conditions, Corros. Sci., 2021, 190, p 109666. https://doi.org/10.1016/j.corsci.2021.109666

    Article  CAS  Google Scholar 

  30. S. Yin, J. Cizek, X. Suo, W. Li, and H. Liao, Thermal Spray Technology, Adv. Mater. Sci. Eng., 2019, 2019, p 8654764. https://doi.org/10.1155/2019/8654764

    Article  Google Scholar 

  31. G.C.M. Patel, N.B. Pradeep, L. Girisha, H.M. Harsha, and A.K. Shettigar, Experimental Analysis and Optimization of Plasma Spray Parameters on Microhardness and Wear Loss of Mo-Ni-Cr Coated Super Duplex Stainless Steel, Aust. J. Mech. Eng., 2022, 20(5), p 1426–1438. https://doi.org/10.1080/14484846.2020.1808760

    Article  Google Scholar 

  32. K. Singh, K. Goyal, and R. Goyal, Hot Corrosion Behaviour of Different Cr3C2-NiCr Coatings on Boiler Tube Steel at Elevated Temperature, World J. Eng., 2019, 16(4), p 452–459. https://doi.org/10.1108/WJE-02-2019-0049

    Article  CAS  Google Scholar 

  33. A. Singh, K. Goyal, and R. Goyal, An Investigation on Hot Corrosion Behaviour of Cermet Coatings in Simulated Boiler Environment, J. Bio- Tribo-Corros., 2019, 5, p 86. https://doi.org/10.1007/s40735-019-0278-9

    Article  Google Scholar 

  34. V.P.S. Sidhu, K. Goyal, and R. Goyal, Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment, Adv. Eng. Forum, 2017, 20, p 1–9. https://doi.org/10.4028/www.scientific.net/AEF.20.1

    Article  Google Scholar 

  35. S. Hong et al., Microstructure and Cavitation-Silt Erosion Behavior of High-Velocity Oxygen-Fuel (HVOF) Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2013, 225, p 85–91. https://doi.org/10.1016/j.surfcoat.2013.03.020

    Article  CAS  Google Scholar 

  36. Z. Zhang, X. Lu, and J. Luo, Tribological Properties of Rare Earth Oxide Added Cr3C2-NiCr Coatings, Appl. Surf. Sci., 2007, 253(9), p 4377–4385. https://doi.org/10.1016/j.apsusc.2006.09.040

    Article  CAS  Google Scholar 

  37. V.Y. Ulianitsky, I.S. Batraev, D.K. Rybin, D.V. Dudina, A.A. Shtertser, and A.V. Ukhina, Detonation Spraying of Cr3C2-NiCr Coatings and their Properties, J. Therm. Spray Technol., 2022, 31(3), p 598–608. https://doi.org/10.1007/s11666-021-01301-z

    Article  CAS  Google Scholar 

  38. J.M. Guilemany, J. Fernandez, J. Delgado, A.V. Benedetti, and F. Climent, Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2-NiCr coatings, Surf. Coat. Technol., 2002, 153, p 107–113.

    Article  CAS  Google Scholar 

  39. G.C. Ji, C.J. Li, Y.Y. Wang, and W.Y. Li, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749–6757. https://doi.org/10.1016/j.surfcoat.2005.10.005

    Article  CAS  Google Scholar 

  40. P.S. Kevin, A. Tiwari, S. Seman, S.A.B. Mohamed, and R. Jayaganthan, Erosion-Corrosion Protection due to Cr3C2-NiCr Cermet Coating on Stainless Steel, Coatings, 2020, 10(11), p 1–17. https://doi.org/10.3390/coatings10111042

    Article  CAS  Google Scholar 

  41. B.B. Mishra and H. Nautiyal, Frictional and Wear Behavior of Cr3C2-NiCr Coating on AISI-304 Stainless Steel, Adv. Mater. Process. Technol., 2022, 8(4), p 4007–4017. https://doi.org/10.1080/2374068X.2022.2036508

    Article  Google Scholar 

  42. M. Majunatha, R.S. Kulkarni, and M. Krishna, Investigation of HVOF Thermal Sprayed Cr3C2-NiCr Cermet Carbide Coatings on Erosive Performance of AISI 316 Molybdenum Steel, Procedia Mater. Sci., 2014, 5, p 622–629. https://doi.org/10.1016/j.mspro.2014.07.308

    Article  CAS  Google Scholar 

  43. A.S. Hajare and C.L. Gogte, Comparative Study of Wear Behaviour of Thermal Spray HVOF Coating on 304 SS, Mater. Today Proc., 2018, 5, p 6924–6933. https://doi.org/10.1016/j.matpr.2017.11.354

    Article  CAS  Google Scholar 

  44. D.H. Bhosale, W.S. Rathod, M. Nogaraj, and M. Nagaraj, High-Temperature Erosion and Sliding Wear of Thermal Sprayed WC-Cr3C2-Ni Coatings, Mater. High Temp., 2021, 38, p 464–474. https://doi.org/10.1080/09603409.2021.1979734

    Article  CAS  Google Scholar 

  45. N.V. Abhijith, D. Kumar, and D. Kalyansundaram, Development of Single-Stage TiNbMoMnFe High-Entropy Alloy Coating on 304L Stainless Steel using HVOF Thermal Spray, J. Therm. Spray Technol., 2022, 31, p 1032–1044. https://doi.org/10.1007/s11666-021-01294-9

    Article  CAS  Google Scholar 

  46. N. Abu-warda, A.J. Lopez, M.D. Lopez, and M.V. Utrilla, Ni20Cr Coating on T24 Steel Pipes by HVOF Thermal Spray for High Temperature Protection, Surf. Coat. Technol., 2020, 381, p 125133. https://doi.org/10.1016/j.surfcoat.2019.125133

    Article  CAS  Google Scholar 

  47. S. Singh and M. Kaur, Mechanical and Microstructural Properties of NiCrFeSiBC/Cr3C2 Composite Coatings—Part I, Surf. Eng., 2016, 32, p 464–474. https://doi.org/10.1179/1743294414Y.0000000416

    Article  CAS  Google Scholar 

  48. J.O. Park, S. Matsch, and H. Böhni, Effects of Temperature and Chloride Concentration on Pit Initiation and Early Pit Growth of Stainless Steel, J. Electrochem. Soc., 2002, 149(2), p B34. https://doi.org/10.1149/1.1430415

    Article  CAS  Google Scholar 

  49. J.M. Guilemany, J. Nutting, and N. Llorca-Isern, Characterisation of Cr3C2-NiCr Cermet Powder for High Velocity Oxyfuel Spraying, Powder Metall., 1994, 37, p 289–292. https://doi.org/10.1179/pom.1994.37.4.289

    Article  CAS  Google Scholar 

  50. Q. Feng, C. Jiang, Z. Xu, L. Xie, and V. Ji, Effect of Shot Peening on the Residual Stress and Microstructure of Duplex Stainless Steel, Surf. Coat. Technol., 2013, 226, p 140–144. https://doi.org/10.1016/j.surfcoat.2013.03.047

    Article  CAS  Google Scholar 

  51. J.M. Guilemany, N. Espallargas, P.H. Suegama, and A.V. Benedetti, Comparative Study of Cr3C2-NiCr Coatings Obtained by HVOF and Hard Chromium Coatings, Corros. Sci., 2006, 48(10), p 2998–3013. https://doi.org/10.1016/j.corsci.2005.10.016

    Article  CAS  Google Scholar 

  52. S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High Temperature Hot Corrosion Behaviour of NiCr and Cr3C2-NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750 °C, Surf. Coat. Technol., 2012, 206(19-20), p 3839–3850. https://doi.org/10.1016/j.surfcoat.2012.01.060

    Article  CAS  Google Scholar 

  53. W. Zhou, K. Zhou, Y. Li, C. Deng, and K. Zeng, High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings, Appl. Surf. Sci., 2017, 416, p 33–44. https://doi.org/10.1016/j.apsusc.2017.04.132

    Article  CAS  Google Scholar 

  54. A. Babu, D. Dzhurinskiy, S. Dautov, and P. Shorkinov, Structure and Electrochemical Behavior of Atmospheric Plasma Sprayed Cr3C2-NiCr Cermet Composite Coatings, Int. J. Refract Metal Hard Mater., 2023, 111, p 106105. https://doi.org/10.1016/j.ijrmhm.2023.106105

    Article  CAS  Google Scholar 

  55. J. Du, F. Li, Y. Li, L. Wang, H. Lu, X. Ran, and X. Zhang, Influences of Plasma Arc Remelting on Microstructure and Service Performance of Cr3C2-NiCr/NiCrAl Composite Coating, Surf. Coat. Technol., 2019, 369, p 16–30. https://doi.org/10.1016/j.surfcoat.2019.04.037

    Article  CAS  Google Scholar 

  56. R.S. Dutta, R. Purandare, A. Lobo, S.K. Kulkarni, and G.K. Dey, Microstructural Aspects of the Corrosion of Alloy 800, Corros. Sci., 2004, 46(12), p 2937–2953. https://doi.org/10.1016/j.corsci.2004.04.005

    Article  CAS  Google Scholar 

  57. A. Szewczyk-Nykiel and J. Kazior, Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution, J. Mater. Eng. Perform., 2017, 26(7), p 3450–3456. https://doi.org/10.1007/s11665-017-2778-4

    Article  CAS  Google Scholar 

  58. J. Pi, Y. Pan, J. Wu, and X. He, Influence of Minor Addition of in on Corrosion Resistance of Cu-based Bulk Metallic Glasses in 3.5% NaCl Solution, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mater. Eng., 2014, 43(1), p 32–35. https://doi.org/10.1016/s1875-5372(14)60047-3

    Article  CAS  Google Scholar 

  59. Č Donik, A. Kocijan, D. Mandrino, I. Paulin, M. Jenko, and B. Pihlar, Initial Oxidation of Duplex Stainless Steel, Appl. Surf. Sci., 2009, 255(15), p 7056–7061. https://doi.org/10.1016/j.apsusc.2009.03.041

    Article  CAS  Google Scholar 

  60. G. Özer, Investigation of Inhibitory Effects of Chitosan on Pitting and Electrochemical Corrosion Behavior Caused by Sigma Phase in Duplex Stainless Steels (DSS), Prot. Met. Phys. Chem. Surf., 2022, 58(1), p 176–189. https://doi.org/10.1134/S2070205122010154

    Article  Google Scholar 

  61. T. Suter, E.G. Webb, H. Böhni, and R.C. Alkire, Pit Initiation on Stainless Steels in 1 M NaCl With and Without Mechanical Stress, J. Electrochem. Soc., 2001, 148(5), p B174. https://doi.org/10.1149/1.1360204

    Article  CAS  Google Scholar 

  62. Z. Wei, D. Cui, Z. Wei, and S. Hong, HVOF spray of Cr3C2-NiCr Coating for Enhancing the Corrosion Resistance of Nickel Aluminium Bronze in 3.5% NaCI Solution with Different Sulphide Concentrations, J. Market. Res., 2023, 23, p 869–881. https://doi.org/10.1016/j.jmrt.2023.01.050

    Article  CAS  Google Scholar 

  63. M. Hoseinpoor, M. Momeni, M.H. Moayed, and A. Davoodi, EIS Assessment of Critical Pitting Temperature of 2205 Duplex Stainless Steel in Acidified Ferric Chloride Solution, Corros. Sci., 2014, 80, p 197–204. https://doi.org/10.1016/j.corsci.2013.11.023

    Article  CAS  Google Scholar 

  64. K. Bobzin, L. Zhao, M. Öte, T. Königstein, and M. Steeger, Impact Wear of an HVOF-Sprayed Cr3C2-NiCr Coating, Int. J. Refract. Metals Hard Mater., 2018, 70, p 191–196. https://doi.org/10.1016/j.ijrmhm.2017.10.011

    Article  CAS  Google Scholar 

  65. G. Özer et al., Effect of Heat Treatments on the Microstructure and Wear Behaviour of a Selective Laser Melted Maraging Steel, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., 2022, 236(6), p 2526–2535. https://doi.org/10.1177/09544089221093994

    Article  Google Scholar 

  66. H.M. Khan, M.S. Yilmaz, S.S. Karabeyoğlu, A. Kisasoz, and G. Özer, Dry Sliding Wear Behavior of 316 L Stainless Steel Produced by Laser Powder Bed Fusion: A Comparative Study on Test Temperature, Mater. Today Commun., 2023, 34, p 105155. https://doi.org/10.1016/j.mtcomm.2022.105155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Çimtaş Hassas İşleme Sanayi ve Ticaret Ltd. Şti. for the support provided to establish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tolun Uğuz or Alptekin Kısasöz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, R.G., Özbay Kısasöz, B., Tarakçı, G. et al. Influence of High-Velocity Oxy-fuel Sprayed Cr3C2-NiCr Coating on Corrosion and Wear Properties of AISI 2205. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09324-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09324-7

Keywords

Navigation