Skip to main content
Log in

SEM/EDS Investigation of Aluminized Deformable Austempered Ductile Iron with Al and AlCr Particle Slurries Before and After High-Temperature Oxidation

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Deformable Austempered Ductile Iron (DADI) is a type of cast iron used as a substrate to deposit slurry coatings of Al and AlCr microsized particles. The goals were to obtain decent surface aluminization, to study the high-temperature behavior of aluminized layers received and highlight the microstructural aspects of the developed coatings as well as the formed oxides. The influence of slurry composition on the thickness of the formed intermetallic diffusion layers, their chemistry and microstructure were first studied. Post-coating annealing in the low-Al activity conditions for both pure aluminum and AlCr slurry coatings developed a distinctive layered structure of coatings and diffusion zones when applied onto the Fe rich DADI substrate. The Al slurry has formed a more defined and relatively wide diffusion layer of 20 µm, while the interdiffusion aluminized zone under it was profoundly thinner (4 µm) due to the low activity of Al. The slurry coating of AlCr composition formed a 10 µm thin diffusion zone with mostly unreacted Cr particles incorporated in it and the lightly aluminized layer under the latter were found to be of equal thickness. All the layers for both coatings were rich with Kirkendall voids once again proving the strong, predominantly outward-driven mechanism of diffusion. On the other hand, the latter is also supported by the enrichment of all the formed zones with the carbon sourced from the DADI substrate. Subsequent high-temperature oxidation of aluminized DADI specimens with pure Al and AlCr slurries at 650 °C for 500 hours in the laboratory air revealed a more protective nature of the former. This was confirmed by the kinetic data, which showed a reduction of oxide growth rate on the single- and double-component slurry-coated samples by factors of roughly 14 and 4, respectively, when compared with uncoated DADI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. P. Sellamuthu, D.G.H. Samuel, D. Dinakaran, V. Premkumar, Z. Li and S. Seetharaman, Austempered Ductile Iron (ADI): Influence of Austempering Temperature on Microstructure, Mechanical and Wear Properties and Energy Consumption, Metals., 2018, 8, p 53. https://doi.org/10.3390/met8010053

    Article  CAS  Google Scholar 

  2. V.C. Campos Alves, L.L. De Almeida Baracho, C.T. Alves Dos Santos et al., Correlation between Microstructure and Mechanical Properties of Austempered Ductile Irons, Materials Science Forum., 2018, 925, p 203–209.

    Article  Google Scholar 

  3. K. Yoon-Jun, S. Hocheol, P. Hyounsoo and D.L. Jong, Investigation into Mechanical Properties of Austempered Ductile Cast Iron (ADI) in Accordance with Austempering Temperature, Mater. Lett., 2008, 62(3), p 357–360. https://doi.org/10.1016/j.matlet.2007.05.028

    Article  CAS  Google Scholar 

  4. E. Kutelia, N. Khidasheli, O. Tsurtsumia and G. Beradze, The Contact Fatigue and The wear of DADI Class Aluminum Cast Iron, Proc. Eng., 2010, 2(1), p 1219–1224. https://doi.org/10.1016/j.proeng.2010.03.132

    Article  Google Scholar 

  5. V. Sharun and R.B. Anand, Traditional Machining of Austempered Ductile Iron (ADI): A Review, Mater. Today Proc., 2022, 72(4), p 2027–2031. https://doi.org/10.1016/j.matpr.2022.07.445

    Article  CAS  Google Scholar 

  6. J.R. Keough and K.L. Hayrynen, Automotive Applications of Austempered Ductile Iron (ADI): A Critical Review. SAE Transactions, J. Mater. Manuf., 2000, 109(5), p 344–354. https://doi.org/10.4271/2000-01-0764

    Article  Google Scholar 

  7. S. Panneerselvam and S.K. Putatunda, Processing of Nanostructured Austempered Ductile Cast Iron (ADI) by a Novel Method, Int. J. Metall. Met. Phys., 2018, 3(020), p 11. https://doi.org/10.35840/2631-5076/9220

    Article  Google Scholar 

  8. E.R. Kutelia, N.Z. Khidasheli, G.V. Beradze, T.A. Dzigrashvili, D.S. Butskhrikidze, A.M. Qafarov, A.K. Janahmadov, Y.N. Hasanov, and S.I. Bakhtiyarov. New deformable austempered ductile irons (DADI) as an efficient material for substitution of critical parts of oil well equipment made from quality steel, NACE International Corrosion 2008, New Orleans, Louisiana. Paper#08113, 1–12 (2008).

  9. S.K. Putatunda, Development of Austempered Ductile Cast Iron (ADI) with Simultaneous High Yield Strength and Fracture Toughness by a Novel Two-Step Austempering Process, Mater. Sci. Eng. A, 2001, 315(1–2), p 70–80. https://doi.org/10.1016/S0921-5093(01)01210-2

    Article  Google Scholar 

  10. N. Khidasheli, E. Kutelia, S. Bakhtiyarov, G. Beradze and K. Demirkiran, Thermo-Mechanical and Isothermal Treatments Influence on the Wear of ADI during Dry Friction, Georgian Eng. News., 2006, 4, p 25–34.

    Google Scholar 

  11. J. Kattus and B. McPherson, Properties of Cast Iron at Elevated Temperatures, ASTM Special Technical Publication, 1959, 248, p 1–90. https://doi.org/10.1520/STP48314S

    Article  Google Scholar 

  12. G. Aktaş Çelik, Ş Fulya Kahrıman, H. Atapek and Ş Polat, Characterization of the High Temperature Oxidation Behavior of Iron Based Alloys Used as Exhaust Manifolds, MATEC Web Conf., 2018, 188, p 02001. https://doi.org/10.1051/matecconf/20181880200

    Article  Google Scholar 

  13. S. Zhang, D. Dong, Q. Wang, C. Dong and R. Yang, High-Temperature Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels Optimized by Refractory Metal Alloying, Metals, 2021, 11(2), p 213. https://doi.org/10.3390/met11020213

    Article  CAS  Google Scholar 

  14. M.P. Brady, Y. Yamamoto, M.L. Santella et al., The Development of Alumina-Forming Austenitic Stainless Steels for High-Temperature Structural Use, JOM, 2008, 60, p 12–18. https://doi.org/10.1007/s11837-008-0083-2

    Article  CAS  Google Scholar 

  15. D. Li, L. Zhou, Y. Xi, L. Liu, Z. Liu, J. Si and K. Zhu, Phase Transformation Behavior of Alumina Grown on FeAl Alloys with Reactive Element Dopants at 1273 K, J. Alloys Compd., 2017, 692, p 427–433. https://doi.org/10.1016/j.jallcom.2016.09.092

    Article  CAS  Google Scholar 

  16. W.J. Quadakkers and K. Bongartz, The Prediction of Breakaway Oxidation for Alumina Forming ODS Alloys Using Oxidation Diagrams, Mater. Corros., 1994, 45(4), p 232–241. https://doi.org/10.1002/maco.19940450404

    Article  CAS  Google Scholar 

  17. M. Reisert et al., Corrosion of Chromia-Forming and Alumina-Forming Ferritic Stainless Steels under Dual Atmosphere Exposure Conditions, J. Electrochem. Soc., 2021, 168, p 111506. https://doi.org/10.1149/1945-7111/ac38f9

    Article  CAS  Google Scholar 

  18. B. Jönsson and A. Westerlund, Oxidation Comparison of Alumina-Forming and Chromia-Forming Commercial Alloys at 1100 and 1200 °C, Oxid. Met., 2017, 88, p 315–326. https://doi.org/10.1007/s11085-016-9710-4

    Article  CAS  Google Scholar 

  19. B. Pieraggi, Chromia Scale Growth in Alloy Oxidation and the Reactive Element Effect, J. Electrochem. Soc., 1993, 140(10), p 2844. https://doi.org/10.1149/1.2220920

    Article  CAS  Google Scholar 

  20. G.J. Tatlock, H. Al-Badairy, M.J. Bennett and J.R. Nicholls, Characterisation Studies of Chromia Formation on Commercial FeCrAlRE Alloy Foils Following Chemically Induced Failure at 900°C, Mater. High Temp., 2005, 22(3–4), p 467–472. https://doi.org/10.1179/mht.2005.056

    Article  CAS  Google Scholar 

  21. Y. Yürektürk and M. Baydoğan, Characterization of Ferritic Ductile Iron Subjected to Successive Aluminizing and Austempering, Surf. Coat. Technol., 2018, 347, p 142–149. https://doi.org/10.1016/j.surfcoat.2018.04.083

    Article  CAS  Google Scholar 

  22. Y. Yürektürk and M. Baydoğan, Effect of Aluminizing and Austempering Processes on Structural, Mechanical and Wear Properties of a SSF Ductile Iron, Mater. Res. Express., 2019, 6, p 016550. https://doi.org/10.1088/2053-1591/aae804

    Article  CAS  Google Scholar 

  23. F. Pedraza, M. Mollard, B. Rannou et al., Oxidation Resistance of Thermal Barrier Coatings Based on Hollow Alumina Particles, Oxid. Met., 2016, 85, p 231–244. https://doi.org/10.1007/s11085-015-9570-3

    Article  CAS  Google Scholar 

  24. B. Rannou, F. Velasco, S. Guzmán, V. Kolarik and F. Pedraza, Aging and Thermal Behavior of a PVA/Al Microspheres Slurry for Aluminizing Purposes, Mater. Chem. Phys., 2012, 134(1), p 360–365. https://doi.org/10.1016/j.matchemphys.2012.03.002

    Article  CAS  Google Scholar 

  25. B. Grégoire, G. Bonnet and F. Pedraza, Development of a new slurry coating design for the surface protection of gas turbine components, Surf. Coat. Technol., 2019, 374, p 521–530. https://doi.org/10.1016/j.surfcoat.2019.06.020

    Article  CAS  Google Scholar 

  26. G. Boissonnet, B. Grégoire, G. Bonnet and F. Pedraza, Development of Thermal Barrier Coating Systems from Al Microparticles. Part I: Influence of Processing Conditions on the Mechanisms of Formation, Surf. Coat. Technol., 2019, 38, p 125. https://doi.org/10.1016/j.surfcoat.2019.125085

    Article  CAS  Google Scholar 

  27. B. Grégoire, G. Bonnet and F. Pedraza, Mechanisms of Formation of Slurry Aluminide Coatings from Al and Cr Microparticles, Surf. Coat. Technol., 2019, 359, p 323–333. https://doi.org/10.1016/j.surfcoat.2018.11.077

    Article  CAS  Google Scholar 

  28. O. Tsurtsumia, F. Pedraza, B. Gregoire et al., High Temperature Oxidation of Slurry Aluminized Deformable Austempered Ductile Iron (DADI), Metall. Mater. Trans. A., 2020, 51, p 920–926. https://doi.org/10.1007/s11661-019-05576-4

    Article  CAS  Google Scholar 

  29. B. Bouchaud, B. Rannou and F. Pedraza, Slurry Aluminizing Mechanisms of Ni-Based Superalloys Incorporating an Electrosynthesized Ceria Diffusion Barrier, Mater. Chem. Phys., 2013, 143(1), p 416–424. https://doi.org/10.1016/j.matchemphys.2013.09.022

    Article  CAS  Google Scholar 

  30. F. Pedraza, M. Mollard, B. Rannou, J. Balmain, B. Bouchaud and G. Bonnet, Potential Thermal Barrier Coating Systems from Al Microparticles, Mechanisms of Coating Formation on pure Nickel, Mater. Chem. Phys., 2012, 134(2–3), p 700–705. https://doi.org/10.1016/j.matchemphys.2012.03.053

    Article  CAS  Google Scholar 

  31. https://patents.google.com/patent/US8916005B2/en

  32. B. Grégoire, G. Bonnet and F. Pedraza, Reactivity of Al-Cr Microparticles for Aluminizing Purposes, Intermetallics, 2017, 81, p 80–89. https://doi.org/10.1016/j.intermet.2017.03.001

    Article  CAS  Google Scholar 

  33. A. Agüero, K. Spiradek, S. Höfinger, M. Gutiérrez and R. Muelas, Microstructural Evolution of Slurry Fe Aluminide Coatings During High Temperature Steam Oxidation, Materials Science Forum., 2008, 595–598, p 251–259. https://doi.org/10.4028/www.scientific.net/MSF.595-598.251

    Article  Google Scholar 

  34. A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby and J.P. Banks, Cyclic Oxidation and Mechanical Behaviour of Slurry Aluminide Coatings for Steam Turbine Components, Surf. Coat. Technol., 2007, 20, p 6253–6260. https://doi.org/10.1016/j.surfcoat.2006.11.033

    Article  CAS  Google Scholar 

  35. Z. Yang, J. Lu, P. Zhang, M. Le, Y. Zhou, J. Huang, Y. Yuan and Y. Gu, Oxidation Performance and Degradation Mechanism of the Slurry Aluminide Coating Deposited on Super304H in Steam at 600–650°C, Surf. Coat. Technol., 2020 https://doi.org/10.1016/j.surfcoat.2020.125700

    Article  Google Scholar 

  36. ASTM E 384, https://www.astm.org/e0384-17.html

  37. X. Montero, M.C. Galetz and M. Schütze, Low-Activity Aluminide Coatings for Superalloys Using a Slurry Process Free of Halide Activators and Chromates, Surf. Coat. Technol., 2013, 222, p 9–14. https://doi.org/10.1016/j.surfcoat.2013.01.033

    Article  CAS  Google Scholar 

  38. M. Zielińska, J. Sieniawski, M. Yavorska and M. Motyka, Influence of Chemical Composition of Nickel Based Superalloy on the Formation of Aluminide Coatings, Arch. Metall. Mater., 2011, 56, p 1. https://doi.org/10.2478/v10172-011-0023-y

    Article  CAS  Google Scholar 

  39. Y. Zhang, J.A. Haynes, G. Wright et al., Effects of Pt Incorporation on the Isothermal Oxidation Behavior of Chemical Vapor Deposition Aluminide Coatings, Metall. Mater. Trans. A, 2001, 32, p 1727–1741. https://doi.org/10.1007/s11661-001-0150-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shota Rustaveli National Science foundation of Georgia (SRNSFG) grant number FR-21-869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Tsurtsumia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurtsumia, O., Nadaraia, L., Kutelia, E. et al. SEM/EDS Investigation of Aluminized Deformable Austempered Ductile Iron with Al and AlCr Particle Slurries Before and After High-Temperature Oxidation. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09316-7

Keywords

Navigation