Skip to main content
Log in

Development of an Alternative Heat Treatment to the Traditional T6 Heat Treatment of AlSi10Mg Alloy Produced by Additive Manufacturing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, alternative solution heat treatments, applied at lower temperatures and shorter times, were applied to AlSI10Mg samples produced with the powder bed laser fusion technique. Thermocalc software was used to determine the temperatures of the NT6 solution heat treatment. The samples were analyzed by optical microscope, scanning electron microscope, energy-dispersive x-ray analysis, x-ray diffractometer and their mechanical behavior was examined. The results were compared with traditional T6 heat treatments and it was determined that the samples showed better ductility after NT6 heat treatments while maintaining the strength values in the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Özer, Heat Treatment, Microstructure and Corrosion Relationship on 316L SS Produced by AM, Mater. Sci. Technol. (United Kingdom), 2023, 39(6), p 671–682. https://doi.org/10.1080/02670836.2022.2131242

    Article  ADS  CAS  Google Scholar 

  2. A.A. Martin et al., Enhanced Mechanical Performance Via Laser Induced Nanostructure Formation in an Additively Manufactured Lightweight Aluminum Alloy, Appl. Mater. Today, 2021, 22, p 100972. https://doi.org/10.1016/j.apmt.2021.100972

    Article  Google Scholar 

  3. C.İ. Çalışkan et al., Investigation of Direct Metal Laser Sintering Downskin Parameters’ Sagging Effect on Microchannels. Int. J. Adv. Manuf. Technol., 2021, 114, p 2567–2575. https://doi.org/10.1007/s00170-021-07057-8

  4. C.İ. Çalışkan et al., Investigation of Manufacturability and Efficiency of Micro Channels with Different Geometries Produced by Direct Metal Laser Sintering. Int. J. Adv. Manuf. Technol., 2021, 117, p 3805–3817. https://doi.org/10.1007/s00170-021-07928-0

  5. C.D. Clement, J. Masson, and A.S. Kabir, Effects of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Fabricated by Selective Laser Melting Process, J. Manuf. Mater. Process., 2022, 6(3), p 52. https://doi.org/10.3390/jmmp6030052

    Article  CAS  Google Scholar 

  6. Z. Liu et al., Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control, J. Mater. Sci. Technol., 2022, 100, p 224–236. https://doi.org/10.1016/j.jmst.2021.06.011

    Article  CAS  Google Scholar 

  7. V. Madhavadas et al., A Review on Metal Additive Manufacturing for Intricately Shaped Aerospace Components, CIRP J. Manuf. Sci. Technol., 2022, 39, p 18–36. https://doi.org/10.1016/j.cirpj.2022.07.005

    Article  Google Scholar 

  8. D. Dai et al., Influence of Scan Strategy and Molten Pool Configuration on Microstructures and Tensile Properties of Selective Laser Melting Additive Manufactured Aluminum Based Parts, Opt. Laser Technol., 2018, 99, p 91–100. https://doi.org/10.1016/j.optlastec.2017.08.015

    Article  ADS  CAS  Google Scholar 

  9. J. Fiocchi, A. Tuissi, and C.A. Biffi, Heat Treatment of Aluminium Alloys Produced by Laser Powder Bed Fusion: A Review, Mater. Des., 2021, 204, p 109651. https://doi.org/10.1016/j.matdes.2021.109651

    Article  CAS  Google Scholar 

  10. W. Li et al., Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  11. L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, and Y. Sohn, Microstructure, Precipitates and Hardness of Selectively Laser Melted AlSi10Mg Alloy Before and After Heat Treatment, Mater. Charact., 2018, 143, p 5–17. https://doi.org/10.1016/j.matchar.2018.04.022

    Article  CAS  Google Scholar 

  12. H. Zhang et al., Achieving Superior Mechanical Properties of Selective Laser Melted AlSi10Mg Via Direct Aging Treatment, J. Mater. Sci. Technol., 2022, 108, p 226–235. https://doi.org/10.1016/j.jmst.2021.07.059

    Article  CAS  Google Scholar 

  13. H. Xiao, C. Zhang, and H. Zhu, Effect of Direct Aging and Annealing on the Microstructure and Mechanical Properties of AlSi10Mg Fabricated by Selective Laser Melting, Rapid Prototyp. J., 2023, 29(1), p 118–127. https://doi.org/10.1108/RPJ-03-2022-0085

    Article  Google Scholar 

  14. G. Özer and A. Karaaslan, Effect of RRA Heat Treatment on Corrosion and Mechanical Properties of AA7075, Mater. Corros., 2019, 70(11), p 2064–2072. https://doi.org/10.1002/maco.201910955

    Article  CAS  Google Scholar 

  15. G. Özer et al., Investigation of the Effects of Different Heat Treatment Parameters on the Corrosion and Mechanical Properties of the AlSi10Mg Alloy Produced with Direct Metal Laser Sintering, Mater. Corros., 2020, 71(3), p 365–373. https://doi.org/10.1002/maco.201911171

    Article  CAS  Google Scholar 

  16. G. Di Egidio, L. Ceschini, A. Morri, C. Martini, and M. Merlin, A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments, Metall. Mater. Trans. B, 2022, 53(1), p 284–303. https://doi.org/10.1007/s11663-021-02365-6

    Article  CAS  Google Scholar 

  17. M. Tocci, A. Pola, M. Gelfi, and G.M. La Vecchia, Effect of a New High-Pressure Heat Treatment on Additively Manufactured AlSi10Mg Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2020, 51(9), p 4799–4811. https://doi.org/10.1007/s11661-020-05905-y

    Article  ADS  CAS  Google Scholar 

  18. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys using Selective Laser Melting, Progress Mater. Sci., 2019, 106, p 100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  CAS  Google Scholar 

  19. A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, and S.C. Veldhuis, Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting using Recycled Powder, Addit. Manuf., 2018, 21, p 234–247. https://doi.org/10.1016/j.addma.2018.03.014

    Article  CAS  Google Scholar 

  20. E. Maleki et al., Fatigue Behaviour of Notched Laser Powder Bed Fusion AlSi10Mg after Thermal and Mechanical Surface Post-Processing, Mater. Sci. Eng. A, 2022, 829, p 142145. https://doi.org/10.1016/j.msea.2021.142145

    Article  CAS  Google Scholar 

  21. E. Maleki, S. Bagherifard, O. Unal, M. Bandini, and M. Guagliano, The Effects of Microstructural and Chemical Surface Gradients on Fatigue Performance of Laser Powder Bed Fusion AlSi10Mg, Mater. Sci. Eng. A, 2022, 840, p 142962. https://doi.org/10.1016/j.msea.2022.142962

    Article  CAS  Google Scholar 

  22. B. Chen et al., Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys, JOM, 2018, 70(5), p 644–649. https://doi.org/10.1007/s11837-018-2793-4

    Article  CAS  Google Scholar 

  23. A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, and S.C. Veldhuis, The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys, Materials, 2018, 12(1), p 12. https://doi.org/10.3390/ma12010012

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. E. Padovano, C. Badini, A. Pantarelli, F. Gili, and F. D’Aiuto, A Comparative Study of the Effects of Thermal Treatments on AlSi10Mg Produced by Laser Powder Bed Fusion, J. Alloys Compd., 2020, 831, p 154822. https://doi.org/10.1016/j.jallcom.2020.154822

    Article  CAS  Google Scholar 

  25. J. Fite, S. Eswarappa Prameela, J. Slotwinski, and T.P. Weihs, Enhanced Mechanical Properties by Eutectic Cells in AlSi10Mg - A Promising Paradigm for Strengthening Aluminum in Additive Manufacturing, Mater. Charact., 2023, 204, p 113179. https://doi.org/10.1016/j.matchar.2023.113179

    Article  CAS  Google Scholar 

  26. A. Hadadzadeh, B. Shalchi Amirkhiz, A. Odeshi, J. Li, and M. Mohammadi, Role of Hierarchical Microstructure of Additively Manufactured AlSi10Mg on Dynamic Loading Behavior, Addit. Manuf., 2019, 28, p 1–13. https://doi.org/10.1016/j.addma.2019.04.012

    Article  CAS  Google Scholar 

  27. Y. Wang et al., Hall-Petch Relationship in Selective Laser Melting Additively Manufactured Metals: using Grain or Cell Size?, J. Cent. South Univ., 2021, 28(4), p 1043–1057. https://doi.org/10.1007/s11771-021-4678-x

    Article  Google Scholar 

  28. A. Hadadzadeh, C. Baxter, B.S. Amirkhiz, and M. Mohammadi, Strengthening Mechanisms in Direct Metal Laser Sintered AlSi10Mg: Comparison Between Virgin and Recycled Powders, Addit. Manuf., 2018, 23, p 108–120. https://doi.org/10.1016/j.addma.2018.07.014

    Article  CAS  Google Scholar 

  29. A. Hadadzadeh, B.S. Amirkhiz, and M. Mohammadi, Contribution of Mg2Si Precipitates to the Strength of Direct Metal Laser Sintered AlSi10Mg, Mater. Sci. Eng. A, 2019, 739, p 295–300. https://doi.org/10.1016/j.msea.2018.10.055

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is funded by TUBITAK (The Scientific and Technological Research Council of Turkey, Grant Number: 222M181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Özer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tütük, İ., Ural, M.M., Yilmaz, M.S. et al. Development of an Alternative Heat Treatment to the Traditional T6 Heat Treatment of AlSi10Mg Alloy Produced by Additive Manufacturing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09314-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09314-9

Keywords

Navigation