Skip to main content
Log in

Effects of Process Parameters on the Microstructure and Properties of Selective Laser Melting 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The 316L porous bone scaffolds prepared by selective laser melting (SLM) are now widely used in bone defects. The successful implantation of porous bone scaffolds is based on the premise that they have compatible properties with human bone, and the process parameters used in the shaping of the porous bone scaffolds significantly affect their properties. In this study, we investigated the effects of process parameters on the performance of SLM 316L porous scaffolds based on the structure of negative re-entrant hexagonal honeycomb (NRHH) through a combination of finite element analysis and experimental methods using MSC Simufact Additive forming process simulation and SLM forming experiments. The effect of process parameters on the performance of SLM 316L NRHH porous scaffolds was explored. The results show that the selection of process parameters significantly affects the magnitude of residual stress, defect distribution, microstructure, and properties of scaffolds. The residual stress in the scaffolds increased and the grain size decreased and then increased as the energy density increased. The grain size and defect distribution determine the mechanical and corrosion resistance of the scaffolds, and the smallest grain size (230 nm) and optimum corrosion resistance are obtained at the energy density E = 58.33 J/mm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Data and Code Availability

Data will be made available on request.

References

  1. K. Moiduddin, S. Darwish, A. Al-Ahmari, S. ElWatidy, A. Mohammad, and W. Ameen, Structural and Mechanical Characterization of Custom Design Cranial Implant Created Using Additive Manufacturing, Electron. J. Biotechnol., 2017, 29, p 22–31. https://doi.org/10.1016/j.ejbt.2017.06.005

    Article  Google Scholar 

  2. J. Čapek, M. Machová, M. Fousová, J. Kubásek, D. Vojtěch, J. Fojt, E. Jablonská, J. Lipov, and T. Ruml, Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting, Mater. Sci. Eng. C, 2016, 69, p 631–639. https://doi.org/10.1016/j.msec.2016.07.027

    Article  CAS  Google Scholar 

  3. J.Y. Park, S.H. Park, M.G. Kim, S.H. Park, T.H. Yoo, and M.S. Kim, Biomimetic Scaffolds for Bone Tissue Engineering, Adv. Exp. Med. Biol., 2018, 1064, p 109–121. https://doi.org/10.1016/j.mser.2014.04.001. ((in eng))

    Article  CAS  PubMed  Google Scholar 

  4. Y. Chen, W. Li, C. Zhang, Z. Wu, and J. Liu, Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds, Adv. Healthc. Mater., 2020, 9(23), p 2000724. https://doi.org/10.1002/adhm.202000724

    Article  CAS  Google Scholar 

  5. C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, and M. Wang, 3D Printing of Bone Tissue Engineering Scaffolds, Bioact. Mater., 2020, 5(1), p 82–91. https://doi.org/10.1016/j.bioactmat.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. I. Denry and L.T. Kuhn, Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering, Dent. Mater., 2016, 32(1), p 43–53. https://doi.org/10.1016/j.dental.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  7. J. Li, X. Cui, G.J. Hooper, K.S. Lim, and T.B.F. Woodfield, Rational Design, Bio-Functionalization and Biological Performance of Hybrid Additive Manufactured Titanium Implants for Orthopaedic Applications: A Review, J. Mech. Behav. Biomed. Mater., 2020, 105, p 103671. https://doi.org/10.1016/j.jmbbm.2020.103671. ((in eng))

    Article  CAS  PubMed  Google Scholar 

  8. K.J. Bundy, Biomaterials and the Chemical Environment of the Body, Joint Replacement Technologyed. P.A. Revell Ed., Woodhead Publishing, Cambridge, 2008, p 56–80

    Chapter  Google Scholar 

  9. C.N. Kelly, J. Francovich, S. Julmi, D. Safranski, R.E. Guldberg, H.J. Maier, and K. Gall, Fatigue Behavior of As-Built Selective Laser Melted Titanium Scaffolds With Sheet-Based Gyroid Microarchitecture for Bone Tissue Engineering, Acta Biomater., 2019, 94, p 610–626. https://doi.org/10.1016/j.actbio.2019.05.046. ((in eng))

    Article  CAS  PubMed  Google Scholar 

  10. C. Saint-Pastou Terrier, and P. Gasque, Bone Responses in Health and Infectious Diseases: A Focus on Osteoblasts, J. Infect., 2017, 75(4), p 281–292. https://doi.org/10.1016/j.jinf.2017.07.007

    Article  PubMed  Google Scholar 

  11. K.S. Munir, Y. Li, and C. Wen, Metallic Scaffolds Manufactured by Selective Laser Melting for Biomedical Applications, Metallic Foam Boneed. C. Wen Ed., Woodhead Publishing, Cambridge, 2017, p 1–23. https://doi.org/10.1016/B978-0-08-101289-5.00001-9

    Chapter  Google Scholar 

  12. E. Dogan, A. Bhusal, B. Cecen, and A.K. Miri, 3D Printing Metamaterials Towards Tissue Engineering, Appl. Mater. Today, 2020, 20, 100752. https://doi.org/10.1016/j.apmt.2020.100752

    Article  PubMed  PubMed Central  Google Scholar 

  13. S.L. Sing, F.E. Wiria, and W.Y. Yeong, Selective Laser Melting of Lattice Structures: A Statistical Approach to Manufacturability and Mechanical Behavior, Robot. Comput. Integr. Manuf., 2018, 49, p 170–180. https://doi.org/10.1016/j.rcim.2017.06.006

    Article  Google Scholar 

  14. S.A. Fatemi, J.Z. Ashany, A.J. Aghchai, and A. Abolghasemi, Experimental Investigation of Process Parameters on Layer Thickness and Density in direct Metal Laser Sintering: A Response Surface Methodology Approach, Virtual Phys. Prototyp., 2017, 12(2), p 133–140. https://doi.org/10.1080/17452759.2017.1293274

    Article  Google Scholar 

  15. D.K. Do and P. Li, The Effect of Laser Energy Input on the Microstructure, Physical and Mechanical Properties of Ti-6Al-4V Alloys by Selective Laser Melting, Virtual Phys. Prototyp., 2016, 11(1), p 41–47. https://doi.org/10.1080/17452759.2016.1142215

    Article  Google Scholar 

  16. Z. Yu, Z. Xu, Y. Guo, R. Xin, R. Liu, C. Jiang, L. Li, Z. Zhang, and L. Ren, Study on Properties of SLM-NiTi Shape Memory Alloy Under the Same Energy Density, J. Market. Res., 2021, 13, p 241–250. https://doi.org/10.1016/j.jmrt.2021.04.058

    Article  CAS  Google Scholar 

  17. M. Samantaray, D. Nath Thatoi, and S. Sahoo, Finite Element Simulation of Heat Transfer in Laser Additive Manufacturing of AlSi10Mg Powders, Mater. Today Proc., 2020, 22, p 3001–3008. https://doi.org/10.1016/j.matpr.2020.03.435

    Article  CAS  Google Scholar 

  18. W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, and V. Hansen, Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L, J. Alloy. Compd., 2018, 740, p 910–925. https://doi.org/10.1016/j.jallcom.2018.01.098

    Article  CAS  Google Scholar 

  19. D. Kong, C. Dong, X. Ni, and X. Li, Corrosion of Metallic Materials Fabricated by Selective Laser Melting, npj Mater. Degrad., 2019, 3(1), p 24. https://doi.org/10.1038/s41529-019-0086-1

    Article  CAS  Google Scholar 

  20. J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng, Y.L. Feng, and P.Y. Wu, Effect of Laser Energy Density on the Microstructure, Mechanical Properties, and Deformation of Inconel 718 Samples Fabricated by Selective Laser Melting, J. Alloy. Compd., 2019, 786, p 481–488. https://doi.org/10.1016/j.jallcom.2019.01.377

    Article  CAS  Google Scholar 

  21. E. Davoodi, H. Montazerian, A.S. Mirhakimi, M. Zhianmanesh, O. Ibhadode, S.I. Shahabad, R. Esmaeilizadeh, E. Sarikhani, S. Toorandaz, S.A. Sarabi, R. Nasiri, Y. Zhu, J. Kadkhodapour, B. Li, A. Khademhosseini and E. Toyserkani, Additively Manufactured Metallic Biomaterials, Bioact. Mater., 2022, 15, p 214–249. https://doi.org/10.1016/j.bioactmat.2021.12.027

    Article  CAS  PubMed  Google Scholar 

  22. P.Y. Bian, C.C. Wang, K.W. Xu, F.X. Ye, Y.J. Zhang, and L. Li, Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters, Materials, 2022, 15(5), p 1658. https://doi.org/10.3390/ma15051658

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, Effect of selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  CAS  Google Scholar 

  24. D.N. Aqilah, A. Sayuti, Y. Farazila, D.Y. Suleiman, M. Amirah, and W. Izzati, Effects of Process Parameters on the Surface Roughness of Stainless Steel 316L Parts Produced by Selective Laser Melting, J. Test. Eval., 2018, 46(4), p 1673–1683. https://doi.org/10.1520/JTE20170140

    Article  CAS  Google Scholar 

  25. A. Khorasani, I. Gibson, U.S. Awan, and A. Ghaderi, The Effect of SLM Process Parameters on Density, Hardness, Tensile Strength and Surface Quality of Ti-6Al-4V, Addit. Manuf., 2019, 25, p 176–186. https://doi.org/10.1016/j.addma.2018.09.002

    Article  CAS  Google Scholar 

  26. S. Xu, S. Zhang, G. Ren, Y. Pan, and J. Li, Optimization of Structural and Processing Parameters for Selective Laser Melting of Porous 316L Bone Scaffolds, Materials (Basel, Switzerland), 2022 https://doi.org/10.3390/ma15175896

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. HemmasianEttefagh, S. Guo, and J. Raush, Corrosion Performance of Additively Manufactured Stainless Steel Parts: A Review, Addit. Manuf., 2021, 37, p 101689. https://doi.org/10.1016/j.addma.2020.101689

    Article  CAS  Google Scholar 

  28. L. Guo, C. Zhao, Y. Zhao, and X. Wang, A Reasonable Corrigendum on the Previous Article About the Re-entrant and Star-Shape Auxetic Structures by Theory and Simulation, J. Alloy. Compd., 2023, 931, 167490. https://doi.org/10.1016/j.jallcom.2022.167490

    Article  CAS  Google Scholar 

  29. H.-Z. Jiang, Z.-Y. Li, T. Feng, P.-Y. Wu, Q.-S. Chen, Y.-L. Feng, L.-F. Chen, J.-Y. Hou, and H.-J. Xu, Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting, Acta Metall. Sin. (English Letters), 2021, 34(4), p 495–510. https://doi.org/10.1007/s40195-020-01143-8

    Article  CAS  Google Scholar 

  30. P. Mercelis and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12(5), p 254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  31. C. Örnek, S.A.M. Idris, P. Reccagni, and D.L. Engelberg, Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation, Metals, 2016, 6(7), p 167. https://doi.org/10.3390/met6070167

    Article  Google Scholar 

  32. G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence, Acta Mater., 2007, 55(1), p 29–42. https://doi.org/10.1016/j.actamat.2006.08.037

    Article  ADS  CAS  Google Scholar 

  33. W. Chen, G. Van Boven, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels—Part II: Crack Dormancy, Acta Mater., 2007, 55(1), p 43–53. https://doi.org/10.1016/j.actamat.2006.07.021

    Article  ADS  CAS  Google Scholar 

  34. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing Of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  CAS  Google Scholar 

  35. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  36. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1—Measurement Techniques, Mater. Sci. Technol., 2001, 17(4), p 355–365. https://doi.org/10.1179/026708301101509980

    Article  ADS  CAS  Google Scholar 

  37. V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, and S. Thomas, Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting, Corros. Sci., 2020, 164, 108314. https://doi.org/10.1016/j.corsci.2019.108314

    Article  CAS  Google Scholar 

  38. S. Xu, S. Zhang, G. Ren, Y. Pan, and J. Li, Optimization of Structural and Processing Parameters for Selective Laser Melting of Porous 316L Bone Scaffolds, Materials, 2022, 15(17), p 5896. https://doi.org/10.3390/ma15175896

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034

    Article  ADS  CAS  Google Scholar 

  40. Z. Sun, X. Tan, S. Tor, and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016 https://doi.org/10.1016/j.matdes.2016.05.035

    Article  PubMed  PubMed Central  Google Scholar 

  41. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing, Part II: Mech. Behav. Process Parameter Optim Control Addit. Manuf., 2015, 8, p 12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  42. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  CAS  Google Scholar 

  43. M.-S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, and A. Piglione, The Role of Side-Branching in Microstructure Development in Laser Powder-Bed Fusion, Nat. Commun>, 2020, 11(1), p 749. https://doi.org/10.1038/s41467-020-14453-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. Wang, Q. Liu, H. Rao, H. Liu, and C. Qiu, Influence of Porosity and Microstructure on Mechanical and Corrosion Properties of a Selectively Laser Melted Stainless Steel, J. Alloy. Compd., 2020, 831, 154815. https://doi.org/10.1016/j.jallcom.2020.154815

    Article  CAS  Google Scholar 

  45. Y. Sun, A. Moroz, and K. Alrbaey, Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel, J. Mater. Eng. Perform., 2014, 23(2), p 518–526. https://doi.org/10.1007/s11665-013-0784-8

    Article  CAS  Google Scholar 

  46. M. Xu, H. Guo, Y. Wang, Y. Hou, Z. Dong, and L. Zhang, Mechanical Properties and Microstructural Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion and Binder Jetting, J. Market. Res., 2023, 24, p 4427–4439. https://doi.org/10.1016/j.jmrt.2023.04.069

    Article  CAS  Google Scholar 

  47. S. Dwivedi, A. Rai Dixit, and A. KumarDas, Wetting Behavior of Selective Laser Melted (SLM) Bio-medical Grade Stainless Steel 316L, Mater. Today Proceed., 2022, 56, p 46–50. https://doi.org/10.1016/j.matpr.2021.12.046

    Article  CAS  Google Scholar 

  48. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229. https://doi.org/10.1016/j.msea.2014.12.018

    Article  CAS  Google Scholar 

  49. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, Mechanical Behavior of Selective Laser Melted 316L Stainless Steel, Mater. Sci. Eng. A, 2017, 696, p 113–121. https://doi.org/10.1016/j.msea.2017.04.058

    Article  CAS  Google Scholar 

  50. Y. Lu, Y. Zhou, X. Liang, X. Zhang, C. Zhang, M. Zhu, K. Tang, and J. Lin, Early Bone Ingrowth of Cu-Bearing CoCr Scaffolds Produced by Selective Laser Melting: An In Vitro and In Vivo Study, Mater. Des., 2023, 228, 111822. https://doi.org/10.1016/j.matdes.2023.111822

    Article  CAS  Google Scholar 

  51. H. Tekdir, T. Yetim, and A.F. Yetim, Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J. Bionic Eng., 2021, 18(4), p 944–957. https://doi.org/10.1007/s42235-021-0055-6

    Article  Google Scholar 

  52. T. Yetim, H. Tekdir, M. Taftali, K. Turalıoğlu, and A.F. Yetim, Synthesis and Characterisation of Single and Duplex ZnO/TiO2 Ceramic Films on Additively Manufactured Bimetallic Material of 316L Stainless Steel and Ti6Al4V, Surface Topogr. Metrol. Prop., 2023 https://doi.org/10.1088/2051-672X/accf6c

    Article  Google Scholar 

  53. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, On the Enhanced Corrosion Resistance of a Selective Laser Melted Austenitic Stainless Steel, Scr. Mater., 2017, 141, p 94–98. https://doi.org/10.1016/j.scriptamat.2017.07.037

    Article  CAS  Google Scholar 

  54. J. Bedmar, S. García-Rodríguez, M. Roldán, B. Torres, and J. Rams, Effects of the Heat Treatment on the Microstructure and Corrosion Behavior of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion, Corros. Sci., 2022, 209, 110777. https://doi.org/10.1016/j.corsci.2022.110777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Shandong Province (ZR2021ME182), Key industrial projects to replace old and new driving forces in Shandong Province, China (New Energy Industry 2021-03-3), State Key Laboratory of Material Forming and Mould Technology Open Fund Project(P12), National Natural Science Foundation of China (52105377), the Science and Technology Enterprise Innovation Program of Shandong Province, China (2022TSGC2108, 2022TSGC2402, 2023TSGC085, 2023TSGC0119, 2023TSGC0759 and 2023TSGC0961) and 2023 Project Management Measures of introducing urgently needed talents in key supporting regions of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

XH was involved in the conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, and visualization. SX contributed to the resources, supervision, project administration, funding acquisition, writing—review, and editing. XM assisted in the investigation. GR was involved in the supervision. JL, LH and WZ performed the supervision.

Corresponding author

Correspondence to Shubo Xu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, S., Ma, X. et al. Effects of Process Parameters on the Microstructure and Properties of Selective Laser Melting 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09220-0

Keywords

Navigation