Skip to main content
Log in

Surface Residual Stress and Friction Wear Behavior of Vermicular Graphite Cast Iron after Laser Remelting

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Numerical simulation and laser remelting experiments were conducted to investigate the microstructural evolution and changes in residual stress of vermicular graphite cast iron. The results demonstrate that during the remelting process, Fe and C elements interact to form Fe3C, transforming the microstructure from ferrite and worm-like graphite to a mixture of martensite and lysite. These changes contribute to a remarkable 3.49-fold increase in hardness and a significant 0.857-fold decrease in wear rate after remelting. The increase in residual stresses after remelting can be attributed to rapid thermal expansion and solidification stresses during cooling, resulting in a 51.1% increase in residual stresses perpendicular to the laser scanning direction and a 76.9% increase in the parallel direction. Additionally, the experimentally obtained residual stresses in the remelted zone were 10.1 and 6.4% higher than the simulated results in the perpendicular and parallel laser scanning directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. L. Liu, K. Zhao, H. Zhang, C. Tang, Q. Han, J. Chen, D. Tao, and Z. Yang, Surface Evolution of Vermicular Cast Iron in High Frequent Cyclic Plasma and Different Facial Cooling Airflows, Metals-Basel., 2023, 13, p 577. https://doi.org/10.3390/met13030577

    Article  CAS  Google Scholar 

  2. S. Kim, S.L. Cockcroft, and A.M. Omran, Optimization of the Process Parameters Affecting the Microstructures and Properties of Compacted Graphite Iron, J. Alloys Compd., 2009, 476, p 728–732. https://doi.org/10.1016/j.jallcom.2008.09.082

    Article  CAS  Google Scholar 

  3. Y. Lin, S. He, D. Lai, J. Wei, Q. Ji, J. Huang, and M. Pan, Wear Mechanism and Tool Life Prediction of High-Strength Vermicular Graphite Cast Iron Tools for High-Efficiency Cutting, Wear, 2020, 454, 203319. https://doi.org/10.1016/j.wear.2020.203319

    Article  CAS  Google Scholar 

  4. D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England, and C. Daniel, High Temperature Materials for Heavy Duty Diesel Engines: Historical and Future Trends, Prog. Mater. Sci.. Mater Sci., 2019, 103, p 109–179. https://doi.org/10.1016/j.pmatsci.2018.10.004

    Article  CAS  Google Scholar 

  5. S. Skvarenina and Y.C. Shin, Laser-Assisted Machining of Compacted Graphite Iron, Int. J. Mach. Tools ManufManuf, 2006, 46, p 7–17. https://doi.org/10.1016/j.ijmachtools.2005.04.013

    Article  Google Scholar 

  6. Y. Chen, J.C. Pang, C.L. Zou, S.X. Li, and Z.F. Zhang, High-Temperature Fatigue Damage Mechanism and Strength Prediction of Vermicular Graphite Iron, Int. J. Fatigue, 2023, 168, p 107477. https://doi.org/10.1016/j.ijfatigue.2022.107477

    Article  CAS  Google Scholar 

  7. J. Zhou, X. Han, H. Li, S. Liu, and J. Yi, Investigation of Layer-by-Layer Laser Remelting to Improve Surface Quality, Microstructure, and Mechanical Properties of Laser Powder Bed Fused AlSi10Mg Alloy, Mater. Des., 2021, 210, 110092. https://doi.org/10.1016/j.matdes.2021.110092

    Article  CAS  Google Scholar 

  8. J. Miao, H. Yao, J. Wang, Y. Lu, T. Wang, and T. Li, Surface Modification for AlCoCrFeNi21 Eutectic High-Entropy Alloy Via Laser Remelting Technology and Subsequent Aging Heat Treatment, J. Alloys Compd., 2022, 894, p 162380. https://doi.org/10.1016/j.jallcom.2021.162380

    Article  CAS  Google Scholar 

  9. X.-Y. Shao, J. Chen, L. He, and Y.-Z. Xing, Improvements in the Microstructure and Wear Resistance of Cast-Iron Coating Plasma-Sprayed with Mo-Partially Cladded Cast Iron Powder, J. Therm. Spray Technol., 2023, 32, p 1230–1241. https://doi.org/10.1007/s11666-023-01570-w

    Article  CAS  Google Scholar 

  10. Y. Hong, C. Sun, S. Xiu, C. Xu, L. Ma, and X. Zou, Strengthening Surface Generation Mechanism of Carburizing-Assisted Grinding, Tribol. Int.. Int., 2023, 180, p 108300. https://doi.org/10.1016/j.triboint.2023.108300

    Article  CAS  Google Scholar 

  11. P. Twardowski, J. Czyżycki, A. Felusiak-Czyryca, M. Tabaszewski, and M. Wiciak-Pikuła, Monitoring and Forecasting of Tool Wear Based on Measurements of Vibration Accelerations During Cast Iron Milling, J. Manuf. Process., 2023, 95, p 342–350. https://doi.org/10.1016/j.jmapro.2023.04.036

    Article  Google Scholar 

  12. J. Hindi, A. Hegde, G. Bm, S. Sharma, A. Kini, and A. Murthy, TEM Analysis and Related Mechanical Characterization of Age Hardened Aluminium 7075-Grey Cast Iron Particle Reinforced Composites, Cogent Eng., 2022, 9, p 2114208. https://doi.org/10.1080/23311916.2022.2114208

    Article  Google Scholar 

  13. S. Masood Arif Bukhari, N. Husnain, F. Arsalan Siddiqui, M. Tuoqeer Anwar, A. Abbas Khosa, M. Imran, T. Hassan Qureshi and R. Ahmad, Effect of Laser Surface Remelting on Microstructure, Mechanical Properties and Tribological Properties of Metals and Alloys: A Review, Opt. Laser Technol.Technol, 2023, 165, p 109588. https://doi.org/10.1016/j.optlastec.2023.109588

    Article  CAS  Google Scholar 

  14. Y. Li, S. Dong, S. Yan, X. Liu, E. Li, P. He and B. Xu, Elimination of Voids by Laser Remelting During Laser Cladding Ni Based Alloy on Gray Cast Iron, Opt. Laser Technol., 2019, 112, p 30–38. https://doi.org/10.1016/j.optlastec.2018.10.055

    Article  CAS  Google Scholar 

  15. N. Pagano, V. Angelini, L. Ceschini and G. Campana, Laser Remelting for Enhancing Tribological Performances of a Ductile Iron, Procedia CIRP., 2016, 41, p 987–991. https://doi.org/10.1016/j.procir.2015.12.131

    Article  Google Scholar 

  16. M.M. Pariona, A.F. Taques and L.A. Woiciechowski, The Marangoni Effect on Microstructure Properties and Morphology of Laser-Treated Al-Fe Alloy with Single Track by FEM: Varying the Laser Beam Velocity, Int. J. Heat. Mass. Tran., 2018, 119, p 10–19. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.097

    Article  CAS  Google Scholar 

  17. J. Xie, R.N. Raoelison, Y. Zhang, Y. Liu, W. Shou, P.-E. Mazeran, N. Kang and M. Rachik, Mesoscopic Segregation in H13 Steel Molten Pool During Laser Remelting: A Combined Influence of Marangoni Convection and Oxidation, J. Mater. Process. Technol., 2023, 316, p 117956. https://doi.org/10.1016/j.jmatprotec.2023.117956

    Article  CAS  Google Scholar 

  18. S. Gao, Y. Feng, J. Wang, M. Qin, O.P. Bodunde, W.-H. Liao and P. Guo, Molten Pool Characteristics of a Nickel-Titanium Shape Memory Alloy for Directed Energy Deposition, Opt. Laser Technol., 2021, 142, 107215. https://doi.org/10.1016/j.optlastec.2021.107215

    Article  CAS  Google Scholar 

  19. F. Wirth and K. Wegener, A Physical Modeling and Predictive Simulation of the Laser Cladding Process, Addit. Manuf.. Manuf., 2018, 22, p 307–319. https://doi.org/10.1016/j.addma.2018.05.017

    Article  CAS  Google Scholar 

  20. Z. Gan, G. Yu, X. He and S. Li, Numerical Simulation of Thermal Behavior and Multicomponent Mass Transfer in Direct Laser Deposition of Co-Base Alloy on Steel, Int. J. Heat Mass. Tran., 2017, 104, p 28–38. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049

    Article  CAS  Google Scholar 

  21. X. Shi, D. Gu, Y. Li, D. Dai, Q. Ge, Y. Sun and H. Chen, Thermal Behavior and Fluid Dynamics Within Molten Pool During Laser Inside Additive Manufacturing of 316L Stainless Steel Coating on Inner Surface of Steel Tube, Opt. Laser Technol., 2021, 138, 106917. https://doi.org/10.1016/j.optlastec.2021.106917

    Article  CAS  Google Scholar 

  22. S. Cadiou, M. Courtois, M. Carin, W. Berckmans and P. Le Masson, TD Heat Transfer, Fluid Flow and Electromagnetic Model for Cold Metal Transfer Wire Arc Additive Manufacturing (Cmt-Waam), Addit. Manuf.. Manuf., 2020, 36, p 101541. https://doi.org/10.1016/j.addma.2020.101541

    Article  CAS  Google Scholar 

  23. J. Zhao, G. Wang, X. Wang, S. Luo, L. Wang and Y. Rong, Multicomponent Multiphase Modeling of Dissimilar Laser Cladding Process with High-Speed Steel on Medium Carbon Steel, Int. J. Heat Mass. Tran., 2020, 148, 118990. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990

    Article  CAS  Google Scholar 

  24. L. Gomell, T. Haeger, M. Roscher, H. Bishara, R. Heiderhoff, T. Riedl, C. Scheu and B. Gault, Microstructure Manipulation by Laser-Surface Remelting of a Full-Heusler Compound to Enhance Thermoelectric Properties, Acta Mater. Mater., 2022, 223, p 117501. https://doi.org/10.1016/j.actamat.2021.117501

    Article  CAS  Google Scholar 

  25. K. Wei, M. Lv, X. Zeng, Z. Xiao, G. Huang, M. Liu and J. Deng, Effect of Laser Remelting on Deposition Quality, Residual Stress, Microstructure, and Mechanical Property of Selective Laser Melting Processed Ti-5Al-2.5Sn Alloy, Mater CharactCharact., 2019, 150, p 67–77. https://doi.org/10.1016/j.matchar.2019.02.010

    Article  CAS  Google Scholar 

  26. H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De and T. DebRoy, Mechanistic Models for Additive Manufacturing of Metallic Components, Prog. Mater. Sci.. Mater Sci., 2021, 116, 100703. https://doi.org/10.1016/j.pmatsci.2020.100703

    Article  CAS  Google Scholar 

  27. L. Wang, D. Zhang, C. Chen, H. Fu and X. Sun, Multi-physics Field Coupling and Microstructure Numerical Simulation of Laser Cladding for Engine Crankshaft Based on CA-FE Method and Experimental Study, Surf. Coat. Technol., 2022, 438, p 128396. https://doi.org/10.1016/j.surfcoat.2022.128396

    Article  CAS  Google Scholar 

  28. S. Wen and Y.C. Shin, Modeling of Transport Phenomena in Direct Laser Deposition of Metal Matrix Composite, Int. J. Heat. Mass. Tran., 2011, 54, p 5319–5326. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.011

    Article  CAS  Google Scholar 

  29. L. Chen, Y. Zhao, B. Song, T. Yu and Z. Liu, Modeling and Simulation of 3D Geometry Prediction and Dynamic Solidification Behavior of Fe-Based Coatings by Laser Cladding, Opt. Laser Technol., 2021, 139, 107009. https://doi.org/10.1016/j.optlastec.2021.107009

    Article  CAS  Google Scholar 

  30. Z. Gan, G. Yu, X. He and S. Li, Surface-Active Element Transport and Its Effect on Liquid Metal Flow in Laser-Assisted Additive Manufacturing, Int. Commun. Heat Mass., 2017, 86, p 206–214. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.007

    Article  CAS  Google Scholar 

  31. W. Li, G. Zhang, Y. Huang and Y. Rong, UV Laser High-Quality Drilling of CFRP Plate with a New Interlaced Scanning Mode, Compos. Struct.Struct., 2021, 273, 114258. https://doi.org/10.1016/j.compstruct.2021.114258

    Article  Google Scholar 

  32. W. Zhao, Z. Yu and J. Hu, Numerical Simulation and Experimental Analysis on Nanosecond Laser Ablation of Titanium Alloy, J. Manuf. Process., 2023, 99, p 138–151. https://doi.org/10.1016/j.jmapro.2023.05.037

    Article  Google Scholar 

  33. Y. Wang, G. Yang, S. Zhou, C. Sun, B. Li, D. An, S. Zhang and S. Xiu, Effect of Laser Remelting on Microstructure and Mechanical Properties of Ti–6Al–4V Alloy Prepared by Inside-Beam Powder Feeding, Mater. Sci. Eng. A, 2022, 861, p 144266. https://doi.org/10.1016/j.msea.2022.144266

    Article  CAS  Google Scholar 

  34. C. Wang, J. Zhou, T. Zhang, X. Meng, P. Li and S. Huang, Numerical Simulation and Solidification Characteristics for Laser Cladding of Inconel 718, Opt. Laser Technol., 2022, 149, p 107843. https://doi.org/10.1016/j.optlastec.2021.107843

    Article  CAS  Google Scholar 

  35. F.-Z. Sun, Y. Li, W.-D. Tan and M. Pang, Effect of Laser Scanning Speed on the Thermal-Mechanical Coupling Field of Laser Remelting of Valve Seat, Optik, 2021, 225, 165776. https://doi.org/10.1016/j.ijleo.2020.165776

    Article  CAS  Google Scholar 

  36. Z. Zhang, F. Yang, H. Zhang, T. Zhang, H. Wang, Y. Xu and Q. Ma, Influence of CeO2 Addition on Forming Quality and Microstructure of TiC-Reinforced CrTi4-Based Laser Cladding Composite Coating, Mater CharactCharact, 2021, 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732

    Article  CAS  Google Scholar 

  37. M.A. Essam, A.Y. Shash, H. Megahed and E. El-Kashif, Effect of Section Thickness on Microstructure and Mechanical Properties of Compacted Graphite Iron for Diesel Engine Applications, Heliyon., 2021, 7, e05930. https://doi.org/10.1016/j.heliyon.2021.e05930

    Article  CAS  Google Scholar 

  38. W.E. Alphonso, M. Baier, S. Carmignato, J.H. Hattel and M. Bayat, On the Possibility of Doing Reduced Order, Thermo-Fluid Modelling of Laser Powder Bed Fusion (L-PBF)—Assessment of the Importance of Recoil Pressure and Surface Tension, J. Manuf. Process., 2023, 94, p 564–577. https://doi.org/10.1016/j.jmapro.2023.03.040

    Article  Google Scholar 

  39. Y. Jiang, Y. Cheng, X. Zhang, J. Yang, X. Yang and Z. Cheng, Simulation and Experimental Investigations on the Effect of Marangoni Convection on Thermal Field During Laser Cladding Process, Optik, 2020, 203, 164044. https://doi.org/10.1016/j.ijleo.2019.164044

    Article  CAS  Google Scholar 

  40. T. Jia, C. Li, S. Jia, Y. Liu and X. Han, Influence Mechanism of Active Elements on Multi-Field Coupling in Laser Cladding Fe60 Process, Int. J. Adv. Manuf. Technol., 2023, 124, p 411–428. https://doi.org/10.1007/s00170-022-10518-3

    Article  Google Scholar 

  41. H.L. Wei, G.L. Knapp, T. Mukherjee and T. DebRoy, Three-Dimensional Grain Growth During Multi-layer Printing of a Nickel-Based Alloy Inconel 718, Addit. Manuf.. Manuf., 2019, 25, p 448–459. https://doi.org/10.1016/j.addma.2018.11.028

    Article  CAS  Google Scholar 

  42. Q. Chen, G. Guillemot, C.-A. Gandin and M. Bellet, Numerical Modelling of the Impact of Energy Distribution and Marangoni Surface Tension on Track Shape in Selective Laser Melting of Ceramic Material, Addit. Manuf.. Manuf., 2018, 21, p 713–723. https://doi.org/10.1016/j.addma.2018.03.003

    Article  Google Scholar 

  43. N.S. Rossini, M. Dassisti, K.Y. Benyounis and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588. https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  44. S. Liu, M. Pang and F. Ji, Tribological Properties of Laser Cladding Nickel-Based WC Reinforced Ag Self-Lubricating Coating on RuT450 Surface, Opt. Laser Technol., 2023, 163, 109393. https://doi.org/10.1016/j.optlastec.2023.109393

    Article  CAS  Google Scholar 

  45. V. Fourlakidis, J.C. Hernando, D. Holmgren and A. Diószegi, Relationship Between Thermal Conductivity and Tensile Strength in Cast Irons, Int. J. Metalcast. J Metalcast., 2023 https://doi.org/10.1007/s40962-023-00970-6

    Article  Google Scholar 

  46. B.C.M. Ribeiro, F.M. Rocha, B.M. Andrade, W. Lopes and E.C.S. Corrêa, Influence of Different Concentrations of Silicon, Copper and Tin in the Microstructure and in the Mechanical Properties of Compacted Graphite Iron, Mater. Res., 2020 https://doi.org/10.1590/1980-5373-mr-2019-0678

    Article  Google Scholar 

  47. Y.-H. Shy, C.-H. Hsu, S.-C. Lee and C.-Y. Hou, Effects of Titanium Addition and Section Size on Microstructure and Mechanical Properties of Compacted Graphite Cast Iron, Mater. Sci. Eng. A, 2000, 278, p 54–60. https://doi.org/10.1016/S0921-5093(99)00599-7

    Article  Google Scholar 

  48. H. Megahed, E. El-Kashif, A.Y. Shash and M.A. Essam, Effect of Holding Time, Thickness and Heat Treatment on Microstructure and Mechanical Properties of Compacted Graphite Cast Iron, J. Market. Res., 2019, 8, p 1188–1196. https://doi.org/10.1016/j.jmrt.2018.07.021

    Article  CAS  Google Scholar 

  49. R. Ghasemi, I. Hassan, A. Ghorbani and A. Dioszegi, Austempered Compacted Graphite Iron—Influence of Austempering Temperature and Time on Microstructural and Mechanical Properties, Mater. Sci. Eng. A, 2019, 767, 138434. https://doi.org/10.1016/j.msea.2019.138434

    Article  CAS  Google Scholar 

  50. E. Guzik, D. Kopyciński, T. Kleingartner and M. Sokolnicki, The Structure and Mechanical Properties of Pearlitic-Ferritic Vermicular Cast Iron, Arch. Foundry Eng., 2012, 12, p 33–36. https://doi.org/10.2478/v10266-012-0006-0

    Article  CAS  Google Scholar 

  51. B.I. Imasogie, Microstructural Features and Mechanical Properties of Compacted Graphite Iron Treated with Calcium-Magnesium Based Masteralloy, J. Mater. Eng. Perform., 2003, 12, p 239–243. https://doi.org/10.1361/105994903770343060

    Article  CAS  Google Scholar 

  52. H. Song, J. Lei, J. Xie, S. Wu, L. Wang and W. Shou, Laser Melting Deposition of K403 Superalloy: The Influence of Processing Parameters on the Microstructure and Wear Performance, J. Alloys Compd., 2019, 805, p 551–564. https://doi.org/10.1016/j.jallcom.2019.07.102

    Article  CAS  Google Scholar 

  53. S.-Y. Zhang, X.-B. Liu, Y. Zhu, Y.-F. Liu, Y. Meng, J. Liang and S.-H. Zhang, Stellite3-Ti3SiC2-Cu Composite Coatings on IN718 by Laser Cladding Towards Improved Wear and Oxidation Resistance, Surf. Coat. Technol., 2022, 446, p 128766. https://doi.org/10.1016/j.surfcoat.2022.128766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Industrial Transformation and Upgrading Fund of the Ministry of Industry and Information Technology (RZJC-XM19-004).

Author information

Authors and Affiliations

Authors

Contributions

Jiaxing Song: Writing—original draft, Writing—review & editing, Formal analysis, Data curation. Buyun Zheng: Investigation, Visualization. Yisen Tang: Resources, Software. Zhengyang Li: Writing—review & editing, Methodology. Jianbo Lei: Conceptualization, Writing—review & editing, Formal analysis.

Corresponding authors

Correspondence to Zhengyang Li or Jianbo Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zheng, B., Tang, Y. et al. Surface Residual Stress and Friction Wear Behavior of Vermicular Graphite Cast Iron after Laser Remelting. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-09128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09128-1

Keywords

Navigation