Skip to main content
Log in

Microstructure and Texture Correlation with Mechanical Properties and Formability of Friction Stir-Welded AA5754 Sheets

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir tailor-welded blanks are often used in the production of complex-shaped components such as structural and automotive parts for their improved forming limits, uniform strain distribution throughout the component and material savings. Despite having such crucial impact, detailed investigation on the formability of friction stir-welded blanks is limited. This study investigated the impact of different weld parameters upon the mechanical properties and formability of friction stir-welded AA5754 sheets and correlating them with microstructure and texture studies. The tensile and hardness test results were explained based on weld quality at each parameter combination. To assess the formability, limit dome height tests were performed at different strain paths, and it was revealed that the minor strain of the welded specimens was poor in the biaxial region. Texture studies confirmed that the Goss texture component was either weak or completely diminished in the case of the biaxial strain path of deformed welded specimens leading to less minor strain in the biaxial region. The combinations of grain average misorientation, kernel average misorientation, grain orientation spread, and high-angle grain boundary fractions determined from EBSD studies showed the correlation for the effect of different weld parameters on mechanical properties and formability of friction stir-welded AA5754 sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. A. Partnership, Tailor Welded Blank Design and Manufacturing Manual, Southfield, MI, 1995.

    Google Scholar 

  2. M. Simoncini, M. Cabibbo ,and A. Forcellese, Development of Double-Side Friction Stir Welding to Improve Post-Welding Formability of Joints in AA6082 Aluminium Alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230(5), p 807-817.

    Article  CAS  Google Scholar 

  3. T. Gnibl and M. Merklein, Material Flow Control in Tailor Welded Blanks by a Combination of Heat Treatment and Warm Forming, CIRP Ann. Manuf. Technol., 2016, 65, p 305-308.

    Article  Google Scholar 

  4. P. Tayebi, A. Fazli, P. Asadi ,and M. Soltanpour, Formability Analysis of Dissimilar Friction Stir Welded AA 6061 and AA 5083 Blanks by SPIF Process, CIRP J. Manuf. Sci. Technol., 2019, 25, p 50-68.

    Article  Google Scholar 

  5. R. Tylecote, The Solid Phase Welding of Metals, Edwaed Arnold Ltd., New York, 1968.

    Google Scholar 

  6. N.T. Kumbhar, S.K. Sahoo, I. Samajdar, G.K. Dey ,and K. Bhanumurthy, Microstructure and Microtextural Studies of Friction Stir Welded Aluminium Alloy 5052, Mater. Des., 2011, 32(3), p 1657-1666.

    Article  CAS  Google Scholar 

  7. M. Pastor, H. Zhao, R.P. Martukanitz ,and T. Debroy, Porosity, Underfill and Magnesium Loss during Continuous Wave Nd: YAG Laser Welding of Thin Plates of Aluminum Alloys 5182 and 5754, Weld. J., 1999, 78, p 207-216.

    Google Scholar 

  8. F. Thompson, Welding of Aluminium and its Alloys, Nature, 1956, 177, p 568-569. https://doi.org/10.1038/177568b0.

    Article  Google Scholar 

  9. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1-2), p 1-78.

    Article  Google Scholar 

  10. G. Buffa, L. Fratini ,and R. Shivpuri, Finite Element Studies on Friction Stir Welding Processes of Tailored Blanks, Comput. Struct., 2008, 86(1-2), p 181-189.

    Article  Google Scholar 

  11. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr ,and A.C. Nunes, Flow Patterns during Friction Stir Welding, Mater Charact, 2002, 49(2), p 95-101.

    Article  CAS  Google Scholar 

  12. E. Lertora, C. Mandolfino ,and C. Gambaro, Effect of Welding Parameters on AA8090 Al-Li Alloy FSW T-Joints, Key Eng. Mater., 2013, 554-557, p 985-995.

    Article  Google Scholar 

  13. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa ,and K. Higashi, Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 456(1-2), p 344-349.

    Article  Google Scholar 

  14. M. Simoncini and A. Forcellese, Effect of the Welding Parameters and Tool Configuration on Micro- and Macro-Mechanical Properties of Similar and Dissimilar FSWed Joints in AA5754 and AZ31 Thin Sheets, Mater. Des., 2012, 41, p 50-60.

    Article  CAS  Google Scholar 

  15. C. Leitao, R.M. Leal, D.M. Rodrigues, A. Loureiro ,and P. Vilaça, Mechanical Behaviour of Similar and Dissimilar AA5182-H111 and AA6016-T4 Thin Friction Stir Welds, Mater. Des., 2009, 30(1), p 101-108.

    Article  CAS  Google Scholar 

  16. M.P. Miles, T.W. Nelson ,and B.J. Decker, Formability and Strength of Friction-Stir-Welded Aluminum Sheets, Metall. Mater. Trans. A, 2004, 35, p 3461-3468.

    Article  Google Scholar 

  17. D. Kim, W. Lee, J. Kim, C. Kim ,and K. Chung, Formability Evaluation of Friction Stir Welded 6111-T4 Sheet with Respect to Joining Material Direction, Int. J. Mech. Sci., 2010, 52(4), p 612-625.

    Article  Google Scholar 

  18. L.E. Murr, G. Liu ,and J.C. McClure, Dynamic Recrystallization in Friction-Stir Welding of Aluminium Alloy 1100, J. Mater. Sci. Lett., 1997, 16, p 1801-1803.

    Article  CAS  Google Scholar 

  19. M.M. Attallah, C.L. Davis ,and M. Strangwood, Microstructure-Microhardness Relationships in Friction Stir Welded AA5251, J. Mater. Sci., 2007, 42, p 7299-7306.

    Article  CAS  Google Scholar 

  20. D.M. Rodrigues, A. Loureiro, C. Leitao, R.M. Leal, B.M. Chaparro ,and P. Vilaça, Influence of Friction Stir Welding Parameters on the Microstructural and Mechanical Properties of AA 6016-T4 Thin Welds, Mater. Des., 2009, 30(6), p 1913-1921.

    Article  CAS  Google Scholar 

  21. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato ,and H. Kokawa, Grain Structure and Texture Evolution during Friction Stir Welding of Thin 6016 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2010, 527(7-8), p 1962-1969.

    Article  Google Scholar 

  22. J.H. Cho, W.J. Kim ,and C.G. Lee, Texture and Microstructure Evolution and Mechanical Properties during Friction Stir Welding of Extruded Aluminum Billets, Mater. Sci. Eng. A, 2014, 12(597), p 314-323.

    Article  Google Scholar 

  23. R. Shabadi, S. Suwas, S. Kumar, H.J. Roven ,and E.S. Dwarkadasa, Texture and Formability Studies on AA7020 Al Alloy Sheets, Mater. Sci. Eng. A, 2012, 558, p 439-445.

    Article  CAS  Google Scholar 

  24. M. Ghosh, A. Miroux ,and L.A.I. Kestens, Correlating r-Value and through Thickness Texture in Al-Mg-Si Alloy Sheets, J. Alloys Compd., 2015, 619, p 585-591.

    Article  CAS  Google Scholar 

  25. S. Sinha, J.A. Szpunar, N.K. Kumar ,and N.P. Gurao, Tensile Deformation of 316L Austenitic Stainless Steel Using In-Situ Electron Backscatter Diffraction and Crystal Plasticity Simulations, Mater. Sci. Eng. A, 2015, 18(637), p 48-55.

    Article  Google Scholar 

  26. J. Rossiter, A. Brahme, K. Inal ,and R. Mishra, Numerical Analyses of Surface Roughness during Bending of FCC Single Crystals and Polycrystals, Int. J. Plast., 2013, 46, p 82-93.

    Article  CAS  Google Scholar 

  27. Z.G. Li, N. Li, H.W. Jiang, Y.Y. Xiong ,and L. Liu, Deformation Texture Evolution of Pure Aluminum Sheet under Electromagnetic Bulging, J. Alloy. Compd., 2014, 589, p 164-173.

    Article  CAS  Google Scholar 

  28. K.K. Kumar, A. Kumar ,and S. Sundar, Investigation of Microstructure Characteristics and Work Hardening Behaviour of Water-Cooled FSW Dissimilar Aluminium Alloys, Mater. Today Commun., 2023, 35, p 105857.

    Article  CAS  Google Scholar 

  29. K. Elangovan and V. Balasubramanian, Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, Mater. Sci. Eng. A, 2007, 459(1-2), p 7-18.

    Article  Google Scholar 

  30. M.M. Ahmed, A.R. Essa, S. Ataya, M.M. El-Sayed Seleman, A.A. El-Aty, B. Alzahrani, K. Touileb, A. Bakkar, J.J. Ponnore ,and A.Y. Mohamed, Friction Stir Welding of AA5754-H24: Impact of Tool Pin Eccentricity and Welding Speed on Grain Structure, Crystallographic Texture,and Mechanical Properties, Materials, 2023, 16(5), p 2031.

    Article  CAS  Google Scholar 

  31. L.M. Serio, D. Palumbo, L.A.C. De Filippis, U. Galietti ,and A.D. Ludovico, Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates, Materials, 2016, 9(3), p 122.

    Article  Google Scholar 

  32. P.H. Shah and V.J. Badheka, Friction Stir Welding of Aluminium Alloys: An Overview of Experimental Findings—Process, Variables, Development and Applications, Inst. Mech. Eng., 2019, 223(6), p 1191.

    Google Scholar 

  33. S. Gao, C.S. Wu ,and G.K. Padhy, Material Flow, Microstructure and Mechanical Properties of Friction Stir Welded AA 2024-T3 Enhanced by Ultrasonic Vibrations, J. Manuf. Processes., 2017, 1(30), p 385-395.

    Article  Google Scholar 

  34. P.J. Ramulu, R.G. Narayanan ,and S.V. Kailas, Forming Limit Investigation of Friction Stir Welded Sheets: Influence of Shoulder Diameter and Plunge Depth, Int. J. Adv. Manuf. Technol., 2013, 69, p 2757-2772.

    Article  Google Scholar 

  35. R. Rakshit, A. Sarkar, S.K. Panda ,and S. Mandal, Influence of Out-of-Plane Stretch Forming Induced Different Strain Paths on Micro-Texture Evolution, Slip System Activity and Taylor Factor Distribution in Al-Li Alloy, Mater. Sci. Eng. A, 2022, 830, p 142267.

    Article  CAS  Google Scholar 

  36. M. Raturi and A. Bhattacharya, Microstructure and Texture Correlation of Secondary Heating Assisted Dissimilar Friction Stir Welds of Aluminum Alloys, Mater. Sci. Eng. A, 2021, 825, p 141891.

    Article  CAS  Google Scholar 

  37. C. Cho, K. Son, J. Lee, S.K. Kim, Y. Yoon ,and S. Hyun, Effect of the Mg Contents on the Annealing Mechanism and Shear Texture of Al-Mg Alloys, Mater. Sci. Eng. A, 2020, 786, p 139471.

    Article  CAS  Google Scholar 

  38. A. Kumar and K.K. Mugada, Investigation of Material Flow, Microstructure Evolution,and Texture Development in Dissimilar Friction Stir Welding of Al6061 to Ti6Al4V, Mater. Today Commun., 2022, 1(33), p 104424.

    Google Scholar 

  39. M.M.Z. Ahmed, S. Ataya, M.M.E.S. Seleman, T. Allam, N.A. Alsaleh ,and E. Ahmed, Grain Structure, Crystallographic Texture,and Hardening Behavior of Dissimilar Friction Stir Welded AA5083-O and AA5754-H14, Metals, 2021, 11(2), p 1-17.

    Article  Google Scholar 

  40. M.M. Ahmed, B.P. Wynne, W.M. Rainforth, A. Addison, J.P. Martin ,and P.L. Threadgill, Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure,and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium, Metall. Mater. Trans. A, 2019, 50, p 271-284.

    Article  CAS  Google Scholar 

  41. B.M. Darras and M.K. Khraisheh, Analytical Modeling of Strain Rate Distribution during Friction Stir Processing, J. Mater. Eng. Perform., 2008, 17, p 168-177.

    Article  CAS  Google Scholar 

  42. A. Arora, Z. Zhang, A. De ,and T. DebRoy, Strains and Strain Rates during Friction Stir Welding, Scr. Mater., 2009, 61, p 863-866.

    Article  CAS  Google Scholar 

  43. M. Bhargava, S. Chakrabarty, V.K. Barnwal, A. Tewari ,and S.K. Mishra, Effect of Microstructure Evolution during Plastic Deformation on the Formability of Transformation Induced Plasticity and Quenched & Partitioned AHSS, Mater. Des., 2018, 152, p 65-77.

    Article  CAS  Google Scholar 

  44. V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan ,and S.K. Mishra, Effect of Microstructure and Texture on Forming Behaviour of AA-6061 Aluminium Alloy Sheet, Mater. Sci. Eng. A, 2017, 679, p 56-65.

    Article  CAS  Google Scholar 

  45. R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Deformation Texture Development of Nanostructured Materials Produced by the ARB Process, Mater. Sci. Eng. A, 2014, 598, p 263-276.

    Article  CAS  Google Scholar 

  46. R.W. Fonda, J.F. Bingert ,and K.J. Colligan, Development of Grain Structure during Friction Stir Welding, Scr. Mater., 2004, 51, p 243-248.

    Article  CAS  Google Scholar 

  47. B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, L. Wang ,and D. Wu, EBSD Study on Microstructure and Texture of Friction Stir Welded AA5052-O and AA6061-T6 Dissimilar Joint, Mater. Des., 2015, 87, p 593-599.

    Article  CAS  Google Scholar 

  48. H. Jin and D.J. Lloyd, The Different Effects of Asymmetric Rolling and Surface Friction on Formation of Shear Texture in Aluminium Alloy AA5754, Mater. Sci. Technol., 2010, 26, p 754-760.

    Article  CAS  Google Scholar 

  49. S.W. Banovic, M.A. Iadicola and T. Foecke, Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension, Metall. Mater. Trans. A, 2008, 39, p 2246-2258.

    Article  Google Scholar 

  50. J.H. Han, K.K. Jee ,and K.H. Oh, Orientation Rotation Behavior during In Situ Tensile Deformation of Polycrystalline 1050 Aluminum Alloy, Int. J. Mech. Sci., 2003, 45, p 1613-1623.

    Article  Google Scholar 

  51. S. Panchanadeeswaran and D.P. Field, Texture Evolution during Plane Strain Deformation of Aluminum, Acta Metall. Mater., 1995, 43(4), p 1683-1692.

    Article  CAS  Google Scholar 

  52. W.C. Liu, C. Man ,and J.G. Morris, Lattice Rotation of the Cube Orientation to the β Fiber during Cold Rolling of AA 5052 Aluminum Alloy, Scr. Mater., 2001, 45(7), p 807-814.

    Article  CAS  Google Scholar 

  53. S. Birosca, The Deformation Behaviour of Hard and Soft Grains in RR1000 Nickel-Based Superalloy, IOP Conf. Ser. Mater. Sci. Eng., 2015, 82, p 012033.

    Article  Google Scholar 

  54. H.W. Yang, I.P. Widiantara and Y.G. Ko, Effect of Deformation Path on Texture and Tension Properties of Submicrocrystalline Al-Mg-Si Alloy Fabricated by Differential Speed Rolling, Mater. Lett., 2018, 213, p 54-57.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are delighted to acknowledge Prof. K. Narasimhan, IIT Bombay, for extending the Metal Forming Laboratory facility for this work. The authors are also pleased to acknowledge Prof. Sushil Kumar Mishra, for extending their support to use EBSD at the Microstructural Mechanics and Micro-forming Laboratory at IIT Bombay for this work. The help provided by Dr. V Buchibabu, IIT Palakkad, Dr. M. Gopinath, IIT Hyderabad, and Soumya Ranjan Nayak, IIT Bombay, for conducting the experiments is also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marrapu Bhargava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, R., Raja, D. & Bhargava, M. Microstructure and Texture Correlation with Mechanical Properties and Formability of Friction Stir-Welded AA5754 Sheets. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09043-5

Keywords

Navigation