Skip to main content

Advertisement

Log in

Recrystallization Behaviors and Mechanical Properties of Pre-twinned Mg Sheet at Varied Annealing Temperatures

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tensile twins (TTs) were induced in AZ31 Mg rolled sheet and then, the pre-twinned sample (C25) was annealed at 200 °C for 6 h (A200) to retain TTs and 450 °C for 2 h (A450) to eliminate TTs to the full extent, respectively, to explore the effect of recrystallization of pre-twinned Mg sheets on microstructure and mechanical properties. Abundant TTs with a volume fraction of 67.9% are induced in C25, and work hardening and grain refinement strengthening result in its highest ultimate tensile strength of 300 MPa, and its lowest elongation ~ 9% indicates that induced TTs contribute little to deformation coordination. Strong rolling direction (RD)-titled texture is mainly responsible for the distinct difference in its yielding strengths along the RD and transvers direction. Static recrystallization occurs both in A200 and A450. A200 shows excellent ductility (~ 18% elongation) owing to a bimodal distribution with weakened RD-titled texture and its smallest average grain size of 8.02 μm. The vast majority of TTs retains and some “isolated” TT laminae detaching from grain boundaries of their parent grains are observed in A200, but TTs are hardly observed in A450 accompanying some thick TT laminae with grain-like morphology. The recrystallized grains inheriting the orientation of TTs and amalgamation and growth of subgrains strengthen the RD-titled texture and cause increase in fraction of high angle grain boundaries, leading to a slight decrease in strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.M. Miller, T.D. Berman, I.J. Beyerlein, J.W. Jones, and T.M. Pollock, Prediction of the Plastic Anisotropy of Magnesium Alloys with Synthetic Textures and Implications for the Effect of Texture on Formability, Mater. Sci. Eng. –Struct. Mater. Prop. Microstruct. Process., 2016, 675, p 345–360.

    Article  CAS  Google Scholar 

  2. L. Gao, H. Yan, J. Luo, A.A. Luo, and R. Chen, Microstructure and Mechanical Properties of a High Ductility Mg–Zn–Mn–Ce Magnesium Alloy, J. Magn. Alloys, 2013, 1(4), p 283–291.

    Article  CAS  Google Scholar 

  3. S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer, Deformation and Texture Evolution in AZ31 Magnesium Alloy During Uniaxial Loading, Acta Mater., 2006, 54(2), p 549–562.

    Article  CAS  Google Scholar 

  4. R.E. Reed-Hill and W.D. Robertson, The Crystallographic Characteristics of Fracture in Magnesium Single Crystals, Acta Metall., 1957, 5(12), p 728–737.

    Article  CAS  Google Scholar 

  5. B.-C. Suh, M.-S. Shim, K.S. Shin, and N.J. Kim, Current Issues in Magnesium Sheet Alloys: Where Do we Go From Here?, Scr. Mater., 2014, 84–85, p 1–6.

    Article  Google Scholar 

  6. Y. Chino, H. Iwasaki, and M. Mabuchi, Stretch Formability of AZ31 Mg Alloy Sheets at Different Testing Temperatures, Mater. Sci. Eng., A, 2007, 466(1–2), p 90–95.

    Article  Google Scholar 

  7. Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, and W.A. Curtin, Mechanistic Origin and Prediction of Enhanced Ductility in Magnesium Alloys, Science, 2018, 359(6374), p 447–452.

    Article  CAS  Google Scholar 

  8. J. Wang, X.-Y. Yang, Y. Li, Z.-Y. Xiao, D.-X. Zhang, and T. Sakai, Enhanced Ductility and Reduced Asymmetry of Mg–2Al–1Zn Alloy Plate Processed by Torsion and Annealing, Trans. Nonferr. Metals Soc. China, 2015, 25(12), p 3928–35.

    Article  CAS  Google Scholar 

  9. Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, and Q. Liu, Tailoring the Texture of Magnesium Alloy by Twinning Deformation to Improve the Rolling Capability, Scr. Mater., 2011, 64(10), p 986–989.

    Article  CAS  Google Scholar 

  10. H. Zhang, W. Jin, J.F. Fan, W.L. Cheng, H.J. Roven, B.S. Xu, and H.B. Dong, Grain Refining and Improving Mechanical Properties of a Warm Rolled AZ31 Alloy Plate, Mater. Lett., 2014, 135, p 31–34.

    Article  CAS  Google Scholar 

  11. W.L. Cheng, L.F. Wang, H. Zhang, and X.Q. Cao, Enhanced Stretch Formability of AZ31 Magnesium Alloy thin Sheet by Pre-crossed Twinning Lamellas Induced Static Recrystallizations, J. Mater. Process. Technol., 2018, 254, p 302–309.

    Article  CAS  Google Scholar 

  12. W.J. He, Q.H. Zeng, H.H. Yu, Y.C. Xin, B.F. Luan, and Q. Liu, Improving the Room Temperature Stretch Formability of a Mg Alloy Thin Sheet by Pre-twinning, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2016, 655, p 1–8.

    Article  CAS  Google Scholar 

  13. L.F. Wang, M. Cao, W.L. Cheng, H. Zhang, X.Q. Cao, and E. Mostaed, Improved Stretch Formability of AZ31 Magnesium Thin Sheet by Induced 10–12 Tension Twins, Jom, 2018, 70(10), p 2321–2326.

    Article  CAS  Google Scholar 

  14. H. Zhang, G.S. Huang, L.F. Wang, H.J. Roven, Z.B. Xu, and F.S. Pan, Improved Ductility of Magnesium Alloys by a Simple Shear Process Followed by Annealing, Scr. Mater., 2013, 69(1), p 49–52.

    Article  CAS  Google Scholar 

  15. I. Basu and T. Al-Samman, Triggering Rare Earth Texture Modification in Magnesium Alloys by Addition of Zinc and Zirconium, Acta Mater., 2014, 67, p 116–133.

    Article  CAS  Google Scholar 

  16. I. Basu, T. Al-Samman, and G. Gottstein, Shear Band-Related Recrystallization and Grain Growth in Two Rolled Magnesium-Rare Earth Alloys, Mater. Sci. Eng., A, 2013, 579, p 50–56.

    Article  CAS  Google Scholar 

  17. J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747.

    Article  CAS  Google Scholar 

  18. Y.J. Kim, J.U. Lee, Y.M. Kim, and S.H. Park, Microstructural Evolution and Grain Growth Mechanism of Pre-twinned Magnesium Alloy During Annealing, J. Magn. Alloys, 2021, 9(4), p 1233–1245.

    Article  CAS  Google Scholar 

  19. C.F. Guo, R.L. Xin, C.H. Ding, B. Song, and Q. Liu, Understanding of Variant Selection and Twin Patterns in Compressed Mg Alloy Sheets Via Combined Analysis of Schmid Factor and Strain Compatibility Factor, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2014, 609, p 92–101.

    Article  CAS  Google Scholar 

  20. M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield Point Elongation Due to Twinning in a Magnesium Alloy, Acta Mater., 2012, 60(4), p 1433–1443.

    Article  CAS  Google Scholar 

  21. H.H. Nie, X.W. Hao, X.P. Kang, H.S. Chen, C.Z. Chi, and W. Liang, Strength and Plasticity Improvement of AZ31 Sheet by Pre-inducing Large Volume Fraction of 10–12 Tensile Twins, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2020, 776, p 139045.

    Article  CAS  Google Scholar 

  22. S.G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58(18), p 5873–5885.

    Article  CAS  Google Scholar 

  23. Y.C. Xin, H. Zhou, H.H. Yu, R. Hong, H. Zhang, and Q. Liu, Controlling the Recrystallization Behavior of a Mg–3Al–1Zn Alloy Containing Extension Twins, Mater. Sci. Eng., A, 2015, 622, p 178–183.

    Article  CAS  Google Scholar 

  24. J.H. Brunton and M.P.W. Wilson, The Kinetics of Twinning in Zinc and Tin Crystals, Proc. R. Soc. Lond., 1969, 309(1498), p 345–361.

    CAS  Google Scholar 

  25. W.W. Wei, E. Povoden-Karadeniz, and E. Kozeschnik, Saturation of Deformation Twinning in Magnesium Alloys, Mater. Sci. Forum, 2016, 2017(879), p 2084–2087.

    Article  Google Scholar 

  26. J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, In-Situ TEM Observation of 10\(\overline{1}\)2 Twin-Dominated Deformation of Mg Pillars: Twinning Mechanism, Size Effects and Rate Dependency, Acta Mater., 2018, 158, p 407–421.

    Article  CAS  Google Scholar 

  27. J. Shi, K. Cui, B. Wang, L. Deng, C. Wang, Z. Xu, and Q. Li, Effect of Initial Microstructure on Static Recrystallization of Mg-3Al-1Zn Alloy, Mater. Charact., 2017, 129, p 104–113.

    Article  CAS  Google Scholar 

  28. D.K. Guan, W.M. Rainforth, J.H. Gao, J. Sharp, B. Wynne, and L. Ma, Individual Effect of Recrystallisation Nucleation Sites on Texture Weakening in a Magnesium Alloy: Part 1-Double Twins, Acta Mater., 2017, 135, p 14–24.

    Article  CAS  Google Scholar 

  29. B.A.I. Jingsheng, L.U. Qiuhong, and L.U. Lei, Detwinning Behavior Induced by Local Shear Strain in Nanotwinned Cu, Acta Metall. Sin., 2016, 52(4), p 491–496.

    Google Scholar 

  30. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207.

    Article  CAS  Google Scholar 

  31. X. Li, P. Yang, L.N. Wang, L. Meng, and F. Cui, Orientational Analysis of Static Recrystallization at Compression Twins in a Magnesium Alloy AZ31, Mater. Sci. Eng., A, 2009, 517(1), p 160–169.

    Article  Google Scholar 

  32. V. Marx, F.R. Reher, and G. Gottstein, Simulation of Primary Recrystallization Using a Modified Three-Dimensional Cellular Automaton, Acta Mater., 1999, 47(4), p 1219–1230.

    Article  CAS  Google Scholar 

  33. Q. Chen, R. Chen, J. Su, Q. He, B. Tan, C. Xu et al., The Mechanisms of Grain Growth of Mg Alloys: A Review, J. Magn. Alloys., 2022, 10(9), p 2384–2397.

    Article  CAS  Google Scholar 

  34. H. Gleiter, The Mechanism of Grain Boundary Migration, Acta Metall., 1969, 17(5), p 565–573.

    Article  CAS  Google Scholar 

  35. K. Kashihara and F. Inoko, Effect of Piled-Up Dislocations on Strain Induced Boundary Migration (SIBM) in Deformed Aluminum Bicrystals with Originally ∑3 Twin Boundary, Acta Mater., 2001, 49(15), p 3051–3061.

    Article  CAS  Google Scholar 

  36. A. Levinson, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Influence of Deformation Twinning on Static Annealing of AZ31 Mg Alloy, Acta Mater., 2013, 61(16), p 5966–5978.

    Article  CAS  Google Scholar 

  37. W.J. Wu, W.Z. Chen, L.X. Zhang, X.M. Chen, H.X. Wang, W.K. Wang, and W.C. Zhang, Improvement of Tension/Compression Asymmetry for High-Performance ZK61 Magnesium Alloy Rod Via Tailoring Deformation Parameters: Upsetting-Extrusion Temperature and Upsetting Ratio, Mater. Sci. Eng.: A, 2021, 823, p 141767.

    Article  CAS  Google Scholar 

  38. D.H. Song, T. Zhou, J. Tu, L.X. Shi, B. Song, L. Hu, M.B. Yang, Q. Chen, and L.W. Lu, Improved Stretch Formability of AZ31 Sheet Via Texture Control by Introducing a Continuous Bending Channel into Equal Channel Angular Rolling, J. Mater. Process. Technol., 2018, 259, p 380–386.

    Article  CAS  Google Scholar 

  39. L.F. Wang, G.S. Huang, Q. Quan, P. Bassani, E. Mostaed, M. Vedani, and F.S. Pan, The Effect of Twinning and Detwinning on the Mechanical Property of AZ31 Extruded Magnesium Alloy During Strain-Path Changes, Mater. Des., 2014, 63, p 177–184.

    Article  CAS  Google Scholar 

  40. S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg–6% Al–1% Zn Alloy, Mater. Sci. Eng., A, 2004, 379, p 258–263.

    Article  Google Scholar 

  41. B. Song, R.L. Xin, X. Zheng, G. Chen, and Q. Liu, Activation of Multiple Twins by Pre-tension and Compression to Enhance the Strength of Mg-3Al-1Zn Alloy Plates, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2015, 621, p 100–104.

    Article  CAS  Google Scholar 

  42. S. Hyuk Park, S.G. Hong, and C.S. Lee, In-Plane Anisotropic Deformation Behavior of Rolled Mg–3Al–1Zn Alloy by Initial 10–12 Twins, Mater. Sci. Eng.: A, 2013, 570, p 149–163.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China under Grant No. 52005362 and No. U1810208; Fundamental Research Program of Shanxi Province under Grant No. 20210302123163; Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China 2019L0149. The authors acknowledge the assistance of Instrumental Analysis Center Taiyuan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huihui Nie or Liuwei Zheng.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Nie, H., Kong, Q. et al. Recrystallization Behaviors and Mechanical Properties of Pre-twinned Mg Sheet at Varied Annealing Temperatures. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08936-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08936-9

Keywords

Navigation